Home
Class 12
MATHS
By using properties of determinants in |...

By using properties of determinants in `|{:(0,a,-b),(-a,0,-c),(b,c,0):}|=0`

Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    MODERN PUBLICATION|Exercise NCERT FILE (Exercise 4.3)|9 Videos
  • DETERMINANTS

    MODERN PUBLICATION|Exercise NCERT FILE (Exercise 4.4)|7 Videos
  • DETERMINANTS

    MODERN PUBLICATION|Exercise NCERT FILE (Exercise 4.1)|13 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos
  • DIFFERENTIAL EQUATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (9)|12 Videos

Similar Questions

Explore conceptually related problems

Prove that : |{:(0,a-b,a-c),(b-a,0,b-c),(c-a,c-b,0):}|=0

Value of determinant |{:(0,b,-c),(-b,0,a),(c,-a,0):}| is equal to

Using properties of determinants, show that |(b+a,a,a),(b,c+a,b),(c,c,a+b)|=4abc

Using properties of determinants, prove that |{:(0, ab^(2), ac^(2)),(a^(2)b, 0, bc^(2)),(a^(2)c, cb^(2), 0):}|=2a^(3)b^(3)c^(3)

Using properties of determinants Prove that |{:(a+b+c,,-c,,-b),(-c,,a+b+c,,-a),( -b,,-a,,a+b+c):}| = 2 (a+b) (b+c) (c+a)

witout expanding at any stage Prove that |{:(0,,a,,-b),(-a,,0,,-c),(b,,c,,0):}| =0

Using properties of determinant prove that |a+b+c-c-b-c a+b+c-a-b-a a+b+c|=2(a+b)(b+c)(c+a)

If a, b, c are complex numbers, then the determinant Delta = |(0,-b,-c),(bar(b),0,-a),(bar(c),bar(a),0)| , is

MODERN PUBLICATION-DETERMINANTS-NCERT FILE (Exercise 4.2)
  1. Using the property of determinants and without expanding, prove that:...

    Text Solution

    |

  2. Using the property of determinants and without expanding, prove that:...

    Text Solution

    |

  3. Using the property of determinants and without expanding, prove that |...

    Text Solution

    |

  4. Using the property of determinants and without expanding, prove that:...

    Text Solution

    |

  5. Use the properties of determinant and without expanding prove that |...

    Text Solution

    |

  6. By using properties of determinants in |{:(0,a,-b),(-a,0,-c),(b,c,0):}...

    Text Solution

    |

  7. Using properties of determinants, prove that |-a^2a b a c b a-b^2b cc...

    Text Solution

    |

  8. Prove that |(1,a,a^2),(1,b,b^2),(1,c,c^2)|=(a-b)(b-c)(c-a)

    Text Solution

    |

  9. Prove that: (i) |{:(,1,1,1),(,a,b,c),(,a^(3),b^(3),c^(3)):}|=(a-b)(b...

    Text Solution

    |

  10. [[x, x^2, yz],[y, y^2, zx],[z, z^2, xy]]=(x-y)(y-z)(z-x)(xy+yz+zx)

    Text Solution

    |

  11. By using properties of determinants. Show that: (i) |x+4 2x2x2xx+4 2x2...

    Text Solution

    |

  12. Prove, using properties of determinants: |y+k y y y y+k y y y y+k|=k^...

    Text Solution

    |

  13. Prove that: |[a-b-c, 2a,2a],[2b,b-c-a,2b],[2c,2c,c-a-b]|=(a+b+c)^3

    Text Solution

    |

  14. Prove that Det[[x+y+2z,x,y],[z,y+z+2x,y],[z,x,z+x+2y]]=2(x+y+z)^3

    Text Solution

    |

  15. By using properties of determinants. Show that:|1xx^2x^2 1xxx^2 1|=(1-...

    Text Solution

    |

  16. Show that |{:(1+a^(2)-b^(2),,2ab,,-2b),(2ab,,1-a^(2)+b^(2),,2a),(2...

    Text Solution

    |

  17. Using properties of determinants, prove the following: |a^2a b a c...

    Text Solution

    |

  18. Let A be a square matrix of order 3xx3, then |k A|is equal to(A) k|A|...

    Text Solution

    |

  19. Which of the following is correct ?

    Text Solution

    |