Home
Class 12
MATHS
[[x, x^2, yz],[y, y^2, zx],[z, z^2, xy]]...

`[[x, x^2, yz],[y, y^2, zx],[z, z^2, xy]]=(x-y)(y-z)(z-x)(xy+yz+zx)`

Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    MODERN PUBLICATION|Exercise NCERT FILE (Exercise 4.3)|9 Videos
  • DETERMINANTS

    MODERN PUBLICATION|Exercise NCERT FILE (Exercise 4.4)|7 Videos
  • DETERMINANTS

    MODERN PUBLICATION|Exercise NCERT FILE (Exercise 4.1)|13 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos
  • DIFFERENTIAL EQUATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (9)|12 Videos

Similar Questions

Explore conceptually related problems

[[x,x^(2),yzy,y^(2),zxz,z^(2),xy]]=(x-y)(y-z)(z-x)(xy+yz+zx)

By using properties of determinants.Show that: det[[x,x^(2),yzy,y^(2),zxz,z^(2),xy]]=(x-y)(y-z)(z-x)(xy+yz+zx)

Using the properties of determinants, show that: abs((x,x^2,yz),(y,y^2,xz),(z,z^2,xy))=(x−y)(y−z)(z−x)(xy+yz+zx)

xquad x ^ (2), y2yquad y ^ (2), 2xz, z ^ (2), xy] | = (xy) (yz) (zx) (xy + yz + 2x)

Determinant , form (x-y)(y-z)(z-x)(xy+yz+zx), of

Prove that |{:(x^(2),,x^(2)-(y-z)^(2),,yz),(y^(2),,y^(2)-(z-x)^(2),,zx),(z^(2),,z^(2)-(x-y)^(2),,xy):}| =(x-y) (y-z) (z-x)(x+y+z) (x^(2)+y^(2)+z^(2))

Show that |[yz-x^2, zx-y^2, xy-y^2] , [zx-y^2, xy-z^2, yz-x^2] , [xy-z^2, yz-x^2, zx-y^2]|= |[r^2, u^2, u^2] , [u^2, r^2, u^2] , [u^2, u^2, r^2]| where r^2 = x^2+y^2+z^2 and u^2= xy+yz+zx

|[1/x,1/y,1/z],[x^(2),y^(2),z^(2)],[yz,zx,xy]|

Simplify- (x-y)/(xy)+(y-z)/(yz)+(z-x)/(zx)

Prove that |[x,y,z] , [x^2, y^2, z^2] , [yz, zx, xy]| = |[1,1,1] , [x^2, y^2, z^2] , [x^3, y^3, z^3]|

MODERN PUBLICATION-DETERMINANTS-NCERT FILE (Exercise 4.2)
  1. Using the property of determinants and without expanding, prove that:...

    Text Solution

    |

  2. Using the property of determinants and without expanding, prove that:...

    Text Solution

    |

  3. Using the property of determinants and without expanding, prove that |...

    Text Solution

    |

  4. Using the property of determinants and without expanding, prove that:...

    Text Solution

    |

  5. Use the properties of determinant and without expanding prove that |...

    Text Solution

    |

  6. By using properties of determinants in |{:(0,a,-b),(-a,0,-c),(b,c,0):}...

    Text Solution

    |

  7. Using properties of determinants, prove that |-a^2a b a c b a-b^2b cc...

    Text Solution

    |

  8. Prove that |(1,a,a^2),(1,b,b^2),(1,c,c^2)|=(a-b)(b-c)(c-a)

    Text Solution

    |

  9. Prove that: (i) |{:(,1,1,1),(,a,b,c),(,a^(3),b^(3),c^(3)):}|=(a-b)(b...

    Text Solution

    |

  10. [[x, x^2, yz],[y, y^2, zx],[z, z^2, xy]]=(x-y)(y-z)(z-x)(xy+yz+zx)

    Text Solution

    |

  11. By using properties of determinants. Show that: (i) |x+4 2x2x2xx+4 2x2...

    Text Solution

    |

  12. Prove, using properties of determinants: |y+k y y y y+k y y y y+k|=k^...

    Text Solution

    |

  13. Prove that: |[a-b-c, 2a,2a],[2b,b-c-a,2b],[2c,2c,c-a-b]|=(a+b+c)^3

    Text Solution

    |

  14. Prove that Det[[x+y+2z,x,y],[z,y+z+2x,y],[z,x,z+x+2y]]=2(x+y+z)^3

    Text Solution

    |

  15. By using properties of determinants. Show that:|1xx^2x^2 1xxx^2 1|=(1-...

    Text Solution

    |

  16. Show that |{:(1+a^(2)-b^(2),,2ab,,-2b),(2ab,,1-a^(2)+b^(2),,2a),(2...

    Text Solution

    |

  17. Using properties of determinants, prove the following: |a^2a b a c...

    Text Solution

    |

  18. Let A be a square matrix of order 3xx3, then |k A|is equal to(A) k|A|...

    Text Solution

    |

  19. Which of the following is correct ?

    Text Solution

    |