Home
Class 12
MATHS
By using properties of determinants. Sho...

By using properties of determinants. Show that: (i) `|x+4 2x2x2xx+4 2x2x2xx+4|=(5x-4)(4-x)^2` (ii) `|y+k y y y y+k y y y y+k|=k^2(2ydotk)^2`

Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    MODERN PUBLICATION|Exercise NCERT FILE (Exercise 4.3)|9 Videos
  • DETERMINANTS

    MODERN PUBLICATION|Exercise NCERT FILE (Exercise 4.4)|7 Videos
  • DETERMINANTS

    MODERN PUBLICATION|Exercise NCERT FILE (Exercise 4.1)|13 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos
  • DIFFERENTIAL EQUATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (9)|12 Videos

Similar Questions

Explore conceptually related problems

By using properties of determinants. Show that: (i) |(x+4,2x,2x),(2x,x+4,2x),(2x,2x,x+4)|=(5x-4)(4-x)^2 (ii) |(y+k,y,y),(y,y+k,y),(y,y,y+k)|=k^2(3y+k)

Using properties of determinants, prove the following |[x,x+y,x+2y],[x+2y,x,x+y],[x+y,x+2y,x]|=9y^2(x+y)

5x + 2y = 2k , 2 (k + 1 ) x + ky = (3k + 4)

Find each of the following products: (i) (4x + 5y) (4x - 5y) (ii) (3x^(2) + 2y^(2)) (3x^(2) - 2y^(2))

{:(2x + (k - 2)y = k),(6x + (2k - 1) y = 2k + 5):}

{:(2x + 3y = 2),((k + 2)x + (2k + 1)y = 2(k - 1)):}

If the normal at four points P_(i)(x_(i), (y_(i)) l, I = 1, 2, 3, 4 on the rectangular hyperbola xy = c^(2) meet at the point Q(h, k), prove that x_(1) + x_(2) + x_(3) + x_(4) = h, y_(1) + y_(2) + y_(3) + y_(4) = k x_(1)x_(2)x_(3)x_(4) =y_(1)y_(2)y_(3)y_(4) =-c^(4)

The equation of tangent to the curve y=x+(4)/(x^2) , that is parallel to the x-axis is y = k. Then the value of k is?

I. y^(2) + y - 1 = 4 - 2y - y^(2) II. x^(2)/2 - 3/2 x = x - 3

MODERN PUBLICATION-DETERMINANTS-NCERT FILE (Exercise 4.2)
  1. Using the property of determinants and without expanding, prove that:...

    Text Solution

    |

  2. Using the property of determinants and without expanding, prove that:...

    Text Solution

    |

  3. Using the property of determinants and without expanding, prove that |...

    Text Solution

    |

  4. Using the property of determinants and without expanding, prove that:...

    Text Solution

    |

  5. Use the properties of determinant and without expanding prove that |...

    Text Solution

    |

  6. By using properties of determinants in |{:(0,a,-b),(-a,0,-c),(b,c,0):}...

    Text Solution

    |

  7. Using properties of determinants, prove that |-a^2a b a c b a-b^2b cc...

    Text Solution

    |

  8. Prove that |(1,a,a^2),(1,b,b^2),(1,c,c^2)|=(a-b)(b-c)(c-a)

    Text Solution

    |

  9. Prove that: (i) |{:(,1,1,1),(,a,b,c),(,a^(3),b^(3),c^(3)):}|=(a-b)(b...

    Text Solution

    |

  10. [[x, x^2, yz],[y, y^2, zx],[z, z^2, xy]]=(x-y)(y-z)(z-x)(xy+yz+zx)

    Text Solution

    |

  11. By using properties of determinants. Show that: (i) |x+4 2x2x2xx+4 2x2...

    Text Solution

    |

  12. Prove, using properties of determinants: |y+k y y y y+k y y y y+k|=k^...

    Text Solution

    |

  13. Prove that: |[a-b-c, 2a,2a],[2b,b-c-a,2b],[2c,2c,c-a-b]|=(a+b+c)^3

    Text Solution

    |

  14. Prove that Det[[x+y+2z,x,y],[z,y+z+2x,y],[z,x,z+x+2y]]=2(x+y+z)^3

    Text Solution

    |

  15. By using properties of determinants. Show that:|1xx^2x^2 1xxx^2 1|=(1-...

    Text Solution

    |

  16. Show that |{:(1+a^(2)-b^(2),,2ab,,-2b),(2ab,,1-a^(2)+b^(2),,2a),(2...

    Text Solution

    |

  17. Using properties of determinants, prove the following: |a^2a b a c...

    Text Solution

    |

  18. Let A be a square matrix of order 3xx3, then |k A|is equal to(A) k|A|...

    Text Solution

    |

  19. Which of the following is correct ?

    Text Solution

    |