Home
Class 12
MATHS
Let omega be a complex number such that ...

Let `omega` be a complex number such that `2omega+1=z` where `z=sqrt(-3)`. If `|{:(1,1,1),(1,-omega^(2)-1,omega^(2)),(1,omega^(2),omega^(7))|=3k`, then k is equal to

A

`-1`

B

`1`

C

`-z`

D

`z`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    MODERN PUBLICATION|Exercise Chapter test 4|12 Videos
  • DETERMINANTS

    MODERN PUBLICATION|Exercise Check your understanding|10 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos
  • DIFFERENTIAL EQUATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (9)|12 Videos

Similar Questions

Explore conceptually related problems

Let omega = - (1)/(2) + i (sqrt3)/(2) , then the value of the determinant |(1,1,1),(1,-1- omega^(2),omega^(2)),(1,omega^(2),omega^(4))| , is

The inverse of the matrix A=|(1,1,1),(1,omega,omega^2),(1,omega^2,omega)|, where omega=e(2pii)/3, is

If omega is the complex cube root of unity,then prove that det[[1,1,11,-1-omega^(2),omega^(2)1,omega^(2),omega^(4)]]=+-3sqrt(3)i

|[omega+omega^(2),1,omega],[omega^(2)+1,omega^(2),1],[1+omega,omega,omega^(2)]|

Let Z and w be two complex number such that |zw|=1 and arg(z)-arg(w)=pi/2 then

If omega is a complex cube root of unity then the matrix A = [(1, omega^(2),omega),(omega^(2),omega,1),(omega,1,omega^(2))] is a