Home
Class 12
MATHS
I fy={x+sqrt(x^2+a^2)}^n ,p r o v e t h ...

`I fy={x+sqrt(x^2+a^2)}^n ,p r o v e t h a t(dy)/(dx)=(n y)/(sqrt(x^2+a^2))` +a

Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise EXERCISE 5(a) (SHORT ANSWER TYPE QUESTIONS)|52 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise EXERCISE 5(a) (LONG ANSWER TYPE QUESTIONS (I))|39 Videos
  • APPLICATIONS OF THE INTEGRALS

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos
  • DETERMINANTS

    MODERN PUBLICATION|Exercise Chapter test 4|12 Videos

Similar Questions

Explore conceptually related problems

Ify={x+sqrt(x^(2)+a^(2))}^(n), provethat (dy)/(dx)=(ny)/(sqrt(x^(2)+a^(2)))+a

If y={x+sqrt(x^(2)+a^(2))}^(n), then prove that (dy)/(dx)=(ny)/(sqrt((x^(2)+a^(2))))

If y={x+sqrt(x^(2)+a^(2))}^(n), then prove that (dy)/(dx)=(ny)/(sqrt(x^(2)+a^(2)))

If y=[x+sqrt(x^(2)+a^(2))]^(n) then prove that (dy)/(dx)=(ny)/(sqrt(x^(2)+a^(2)))

x(dy)/(dx)=y+sqrt(x^(2)-y^(2))

x(dy)/(dx)-y=2sqrt(y^(2)-x^(2))

if y=sqrt(x^(2)+a^(2)), then show that y(dy)/(dx)=x

If y=(x+sqrt(x^(2)+a^(2)))^(n), then (dy)/(dx) is (a) (ny)/(sqrt(x^(2)+a^(2)))(b)-(ny)/(sqrt(x^(2)+a^(2)))(c)(nx)/(sqrt(x^(2)+a^(2)))(d)-(nx)/(sqrt(x^(2)+a^(2)))

If x=cos t and y=sin t,p ro v et h a t(dy)/(dx)=(1)/(sqrt(3))att=(2 pi)/(3)