Home
Class 12
MATHS
If x^(2)+y^(2)=t andx^(4)+y^(4)=t^(2)+(1...

If `x^(2)+y^(2)=t andx^(4)+y^(4)=t^(2)+(1)/(t^(2)),` then prove that `(dy)/(dx)=(1)/(x^(3)y).`

Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise EXERCISE 5(a) (SHORT ANSWER TYPE QUESTIONS)|52 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise EXERCISE 5(a) (LONG ANSWER TYPE QUESTIONS (I))|39 Videos
  • APPLICATIONS OF THE INTEGRALS

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos
  • DETERMINANTS

    MODERN PUBLICATION|Exercise Chapter test 4|12 Videos

Similar Questions

Explore conceptually related problems

If x^(2)+y^(2)=t-1/t andx^(4)+y^(4)=t^(2)+(1)/(t^(2)), then prove that (dy)/(dx)=(1)/(x^(3)y).

if x^(2)+y^(2)=t-(1)/(t) and x^(4)+y^(4)=t^(2)+(1)/(t^(2)) then prove that (dy)/(dx)=(1)/(x^(3)y)

If x^(2)+y^(2)=t-(1)/(t) and x^(4)+y^(4)=t^(2)+(1)/(t^(2)) then prove that (dy)/(dx)=(1)/(x^(3)y)

If x^(2) +y^(2) =t-(1)/(t) andx^(4) +y^(4) =t^(2) +(1)/( t^(2)),then (dy)/(dx) =

If x+y=t+(1)/(t) and x^(3)+y^(3)=t^(3)+(1)/(t^(3)) then prove that (dy)/(dx)=-(1)/(x^(2))

If x+y=t+(1)/(t) and x^(3)+y^(3)=t^(3)+(1)/(t^(3)) then prove that (dy)/(dx)=-(1)/(x^(2))

If x^(2)+y^(2)=t+(1)/(t) and x^(4)+y^(4)=t^(2)+(1)/(t^(2)) then (dy)/(dx)=

If x^(2)+y^(2)=(t+(1)/(t)) and x^(4)+y^(4)=t^(2)+(1)/(t^(2)), then x^(3)y(dy)/(dx)=

If x^(3)+y^(3)=t-(1)/(t) and x^(6)+y^(6)=t^(2)+(1)/(t^(2)) then prove that (d^(2)y)/(dx^(2))=(2y)/(x^(2))

if x^(2)+y^(2)=t-(1)/(t) and x^(4)+y^(4)=t^(2)+(1)/(t^(2)) then x^(3)y(dy)/(dx)=?