Home
Class 12
MATHS
If e^(x)+e^(y)=e^(x+y), prove that : (...

If `e^(x)+e^(y)=e^(x+y)`, prove that :
`(dy)/(dx)=-(e^(x)(e^(y)-1))/(e^(y)(e^(x)-1))`.

Text Solution

AI Generated Solution

Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise EXERCISE 5(a) (SHORT ANSWER TYPE QUESTIONS)|52 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise EXERCISE 5(a) (LONG ANSWER TYPE QUESTIONS (I))|39 Videos
  • APPLICATIONS OF THE INTEGRALS

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos
  • DETERMINANTS

    MODERN PUBLICATION|Exercise Chapter test 4|12 Videos

Similar Questions

Explore conceptually related problems

If e^(x)+e^(y)=e^(x+y), prove that (dy)/(dx)+e^(y-x)=0

If e^(x)+e^(y)=e^(x+y), prove that (dy)/(dx)+e^(y-x)=0

(dy)/(dx)=(x+e^x)/(y+e^y)

(dy)/(dx)=2y((e^(2x)-e^(-2x))/(e^(2x)+e^(-2x)))

Solve ((dy)/(dx))=e^(x-y)(e^(x)-e^(y))

(dy)/(dx) =y ((e^(3x)-e^(-3x))/(e^(3x) +e^(-3x)))

If e^x+e^y = e^(x+y) , show that (dy)/(dx) = -e^(y-x)

If y=(e^(x)-e^(-x))/(e^(x)+e^(-x)), prove that (dy)/(dx)=1-y^(2)

If e^x+e^y=e^(x+y) then prove that dy/dx =- e^(y-x)

Solve : (dy)/(dx)=e^(x+y)+x^(2)e^(y)