Home
Class 12
MATHS
If xcos(a+y)=cosy, then prove that (dy)/...

If `xcos(a+y)=cosy`, then prove that `(dy)/(dx)=(cos^(2)(a+y))/(sina)`.
Hence, show that `sina(d^(2)y)/(dx^(2))+sin2(a+y)dy/dx=0`.

Text Solution

AI Generated Solution

Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise EXERCISE 5(a) (SHORT ANSWER TYPE QUESTIONS)|52 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise EXERCISE 5(a) (LONG ANSWER TYPE QUESTIONS (I))|39 Videos
  • APPLICATIONS OF THE INTEGRALS

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos
  • DETERMINANTS

    MODERN PUBLICATION|Exercise Chapter test 4|12 Videos

Similar Questions

Explore conceptually related problems

x(dy)/(dx)=y-xcos^(2)(y/x)

If cos y=x cos(a+y), with cos a!=+-1 prove that (dy)/(dx)=(cos^(2)(a+y))/(sin a)

If cos y=x cos(a+y), with cos a!=+-1 prove that (dy)/(dx)=(cos^(2)(a+y))/(sin a)

If cos y=x cos(a+y), with cos a!=+-1 prove that (dy)/(dx)=(cos^(2)(a+y))/(sin a)

If cos y=x cos(a+y), where cos a!=-1 prove that (dy)/(dx)=(cos^(2)(a+y))/(sin a)

If x sin(a+y)+sina.cos(a+y)=0 , then prove that (dy)/(dx) = (sin^(2)(a+y))/(sina)

If cosy=xcos(a+y) , with cosa!=+-1 , prove that (dy)/(dx)=(cos^2(a+y))/(sina) .

If x sin(a+y)+sin a cos(a+y)=0, prove that (dy)/(dx)=(sin^(2)(a+y))/(sin a)

If y=cot x show that (d^(2)y)/(dx^(2))+2y(dy)/(dx)=0

If x sin(a+y)+sin a cos(a+y)=0, prove that (dy)/(dx)=(s in^(2)(a+y))/(sin a)