Home
Class 12
MATHS
Discuss the continuity of the function :...

Discuss the continuity of the function :
`f(x)={{:((|x-2|)/(x-2)", "xne2),(1" ,"x=2):}` at x = 2

Text Solution

AI Generated Solution

The correct Answer is:
To determine the continuity of the function \[ f(x) = \begin{cases} \frac{|x-2|}{x-2} & \text{if } x \neq 2 \\ 1 & \text{if } x = 2 \end{cases} \] at \( x = 2 \), we need to check the following three conditions: 1. \( f(2) \) is defined. 2. The limit \( \lim_{x \to 2} f(x) \) exists. 3. \( \lim_{x \to 2} f(x) = f(2) \). ### Step 1: Check if \( f(2) \) is defined From the function definition, we have: \[ f(2) = 1 \] ### Step 2: Find the limit as \( x \) approaches 2 We need to evaluate the limit from both sides (left-hand limit and right-hand limit). #### Left-hand limit (\( x \to 2^- \)) When \( x < 2 \), \( |x-2| = -(x-2) = 2-x \). Therefore, \[ f(x) = \frac{|x-2|}{x-2} = \frac{2-x}{x-2} = \frac{-(x-2)}{x-2} = -1 \] Thus, \[ \lim_{x \to 2^-} f(x) = -1 \] #### Right-hand limit (\( x \to 2^+ \)) When \( x > 2 \), \( |x-2| = x-2 \). Therefore, \[ f(x) = \frac{|x-2|}{x-2} = \frac{x-2}{x-2} = 1 \] Thus, \[ \lim_{x \to 2^+} f(x) = 1 \] ### Step 3: Check if the limit exists Since the left-hand limit and right-hand limit are not equal: \[ \lim_{x \to 2^-} f(x) = -1 \quad \text{and} \quad \lim_{x \to 2^+} f(x) = 1 \] The overall limit \( \lim_{x \to 2} f(x) \) does not exist. ### Conclusion Since the limit does not exist, we conclude that the function \( f(x) \) is not continuous at \( x = 2 \). ### Summary of Steps: 1. Check if \( f(2) \) is defined: \( f(2) = 1 \). 2. Find left-hand limit: \( \lim_{x \to 2^-} f(x) = -1 \). 3. Find right-hand limit: \( \lim_{x \to 2^+} f(x) = 1 \). 4. Since the limits do not match, conclude that \( f(x) \) is not continuous at \( x = 2 \).
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise EXERCISE 5(a) (LONG ANSWER TYPE QUESTIONS (I))|39 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise EXERCISE 5(b) (LONG ANSWER TYPE QUESTIONS (I))|17 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos
  • APPLICATIONS OF THE INTEGRALS

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos
  • DETERMINANTS

    MODERN PUBLICATION|Exercise Chapter test 4|12 Videos

Similar Questions

Explore conceptually related problems

Discuss the continuity of the function : f(x)={{:((|x-2|)/(2-x)", "xne2),(-1" ,"x=2):} at x = 2

Discuss the continuity of the function : f(x)={{:((1-cosx)/x^(2)", "xne0),(1", "x=0):} at x = 0.

Discuss the continuity of the function f(x)={((|x|)/x", " xne 0),(1", " x=0):} at x=0

Discuss the continuity of the function f(x)=|x-1|+|x-2| at x=1 and x=2

Discuss the continuity of the function f(x)={2x-1(3x)/2 ,ifx<2,ifxgeq2

Discuss the continuity of the function/given by f(x)=x^(3)+x^(2)-1

Discuss the continuity of the function defined by f(x)={x+2, if x 0

Discuss the continuity of the function f(x)={(sin2x)/x ,ifx<0x+2,ifxgeq0

Discuss the continuity of the function f defined by f(x)={x+2 if x 1

MODERN PUBLICATION-CONTINUITY AND DIFFERENTIABILITY-EXERCISE 5(a) (SHORT ANSWER TYPE QUESTIONS)
  1. Discuss the continuity of the function f defined by f(x)=1/x , x!=0.

    Text Solution

    |

  2. Discuss the continuity of the function : f(x)={{:(x",if "xge0),(x^(2...

    Text Solution

    |

  3. Discuss the continuity of the function defined byf(x)={x+2, ifx<0-x+2,...

    Text Solution

    |

  4. Examine the continuity of the function : f(x)={{:(x+1" , "xle2),(2x-...

    Text Solution

    |

  5. f(x)={{:((x^(2)-25)/(x-5)",","when",x ne 5),( 10",", "when",x=5):} is ...

    Text Solution

    |

  6. Discuss the continuity of the function : f(x)={{:((|x-2|)/(x-2)", "x...

    Text Solution

    |

  7. Discuss the continuity of the function : f(x)={{:((|x-2|)/(2-x)", "x...

    Text Solution

    |

  8. Discuss the continuity of the function : f(x)={{:((|x-a|)/(x-a)",whe...

    Text Solution

    |

  9. Discuss the continuity of the function f, where f is defined by f(x){{...

    Text Solution

    |

  10. Discuss the continuity of the function f, where f is defined byf(x)={...

    Text Solution

    |

  11. Discuss the continuity of the function : f(x)={{:(x", "0lexlt1/2),(...

    Text Solution

    |

  12. Discuss the continuity of the function : f(x)={{:((1-cosx)/x^(2)", "...

    Text Solution

    |

  13. Show that the function f(x)defined as f(x) = xcos(1/x),x!=0; 0,x=0is c...

    Text Solution

    |

  14. Show that the following functions are continuous at x = 0 : f(x)={{:...

    Text Solution

    |

  15. Test the continuity of the function f (x) : f(x)={{:(x^(2)sin.(1)/(...

    Text Solution

    |

  16. f(x)={{:(cosx",","when",x ge0, ),(-cosx",", "when", x lt0):} is discon...

    Text Solution

    |

  17. Examine the continuity of the function f(x) at x = 0. f(x)={{:(sinx/...

    Text Solution

    |

  18. Examine the continuity of the funcation f(x)={{: ((|sinx|)/x",", xne...

    Text Solution

    |

  19. Examine the continuity of the function f(x) at x = 0. f(x)={{:((tan2...

    Text Solution

    |

  20. Discuss the continuity of the cosine, cosecant, secant and cotangen...

    Text Solution

    |