Home
Class 12
MATHS
Discuss the continuity of the function :...

Discuss the continuity of the function :
`f(x)={{:(x", "0lexlt1/2),(1/2", "x=1/2),(1-x", "1/2ltxle1):}` at `x=1/2`

Text Solution

AI Generated Solution

The correct Answer is:
To determine the continuity of the function \[ f(x) = \begin{cases} x & \text{for } 0 \leq x < \frac{1}{2} \\ \frac{1}{2} & \text{for } x = \frac{1}{2} \\ 1 - x & \text{for } \frac{1}{2} < x \leq 1 \end{cases} \] at \( x = \frac{1}{2} \), we need to check the following conditions: 1. The function \( f(x) \) must be defined at \( x = \frac{1}{2} \). 2. The left-hand limit as \( x \) approaches \( \frac{1}{2} \) must exist. 3. The right-hand limit as \( x \) approaches \( \frac{1}{2} \) must exist. 4. The left-hand limit, right-hand limit, and the value of the function at \( x = \frac{1}{2} \) must all be equal. ### Step 1: Check if \( f\left(\frac{1}{2}\right) \) is defined From the function definition, we see that: \[ f\left(\frac{1}{2}\right) = \frac{1}{2} \] ### Step 2: Calculate the left-hand limit as \( x \) approaches \( \frac{1}{2} \) The left-hand limit is given by: \[ \lim_{x \to \frac{1}{2}^- f(x) = \lim_{x \to \frac{1}{2}^- x = \frac{1}{2} \] ### Step 3: Calculate the right-hand limit as \( x \) approaches \( \frac{1}{2} \) The right-hand limit is given by: \[ \lim_{x \to \frac{1}{2}^+ f(x) = \lim_{x \to \frac{1}{2}^+ (1 - x) = 1 - \frac{1}{2} = \frac{1}{2} \] ### Step 4: Compare the limits and the function value Now we have: - Left-hand limit: \( \lim_{x \to \frac{1}{2}^- f(x) = \frac{1}{2} \) - Right-hand limit: \( \lim_{x \to \frac{1}{2}^+ f(x) = \frac{1}{2} \) - Function value: \( f\left(\frac{1}{2}\right) = \frac{1}{2} \) Since all three values are equal: \[ \lim_{x \to \frac{1}{2}^- f(x) = \lim_{x \to \frac{1}{2}^+ f(x) = f\left(\frac{1}{2}\right) = \frac{1}{2} \] ### Conclusion The function \( f(x) \) is continuous at \( x = \frac{1}{2} \). ---
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise EXERCISE 5(a) (LONG ANSWER TYPE QUESTIONS (I))|39 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise EXERCISE 5(b) (LONG ANSWER TYPE QUESTIONS (I))|17 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos
  • APPLICATIONS OF THE INTEGRALS

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos
  • DETERMINANTS

    MODERN PUBLICATION|Exercise Chapter test 4|12 Videos

Similar Questions

Explore conceptually related problems

Discuss the continuity of the function f(x)={{:(2x -1 "," x lt 1),(3x-2"," x ge 1):}

Dicuss the continuity of the function: f(x)={{:(1+x^(2)", "0lexle1),(2-x", "xgt1):} at x = 1.

Check the continuity of the function f(x)=2x-1, if x =0

Discuss the continuity of the function f(x) ={(1+x^2,x le 1),(1-x, x gt 1):} at x=1.

Discuss the continuity of the function : f(x)={{:((|x-2|)/(2-x)", "xne2),(-1" ,"x=2):} at x = 2

Discuss the continuity of the function : f(x)={{:((|x-2|)/(x-2)", "xne2),(1" ,"x=2):} at x = 2

Discuss the continuity of the function f(x)={2x-1(3x)/2 ,ifx<2,ifxgeq2

Discuss the continuity of the function : f(x)={{:((1-cosx)/x^(2)", "xne0),(1", "x=0):} at x = 0.

Discuss the continuity of the function f(x)={x , 0lt=x<1//2 12 , x=1//2 1-x , 1//2

MODERN PUBLICATION-CONTINUITY AND DIFFERENTIABILITY-EXERCISE 5(a) (SHORT ANSWER TYPE QUESTIONS)
  1. Discuss the continuity of the function f defined by f(x)=1/x , x!=0.

    Text Solution

    |

  2. Discuss the continuity of the function : f(x)={{:(x",if "xge0),(x^(2...

    Text Solution

    |

  3. Discuss the continuity of the function defined byf(x)={x+2, ifx<0-x+2,...

    Text Solution

    |

  4. Examine the continuity of the function : f(x)={{:(x+1" , "xle2),(2x-...

    Text Solution

    |

  5. f(x)={{:((x^(2)-25)/(x-5)",","when",x ne 5),( 10",", "when",x=5):} is ...

    Text Solution

    |

  6. Discuss the continuity of the function : f(x)={{:((|x-2|)/(x-2)", "x...

    Text Solution

    |

  7. Discuss the continuity of the function : f(x)={{:((|x-2|)/(2-x)", "x...

    Text Solution

    |

  8. Discuss the continuity of the function : f(x)={{:((|x-a|)/(x-a)",whe...

    Text Solution

    |

  9. Discuss the continuity of the function f, where f is defined by f(x){{...

    Text Solution

    |

  10. Discuss the continuity of the function f, where f is defined byf(x)={...

    Text Solution

    |

  11. Discuss the continuity of the function : f(x)={{:(x", "0lexlt1/2),(...

    Text Solution

    |

  12. Discuss the continuity of the function : f(x)={{:((1-cosx)/x^(2)", "...

    Text Solution

    |

  13. Show that the function f(x)defined as f(x) = xcos(1/x),x!=0; 0,x=0is c...

    Text Solution

    |

  14. Show that the following functions are continuous at x = 0 : f(x)={{:...

    Text Solution

    |

  15. Test the continuity of the function f (x) : f(x)={{:(x^(2)sin.(1)/(...

    Text Solution

    |

  16. f(x)={{:(cosx",","when",x ge0, ),(-cosx",", "when", x lt0):} is discon...

    Text Solution

    |

  17. Examine the continuity of the function f(x) at x = 0. f(x)={{:(sinx/...

    Text Solution

    |

  18. Examine the continuity of the funcation f(x)={{: ((|sinx|)/x",", xne...

    Text Solution

    |

  19. Examine the continuity of the function f(x) at x = 0. f(x)={{:((tan2...

    Text Solution

    |

  20. Discuss the continuity of the cosine, cosecant, secant and cotangen...

    Text Solution

    |