Home
Class 12
MATHS
Discuss the continuity of the function :...

Discuss the continuity of the function :
`f(x)={{:((1-cosx)/x^(2)", "xne0),(1", "x=0):}` at x = 0.

Text Solution

AI Generated Solution

The correct Answer is:
To determine the continuity of the function \[ f(x) = \begin{cases} \frac{1 - \cos x}{x^2} & \text{if } x \neq 0 \\ 1 & \text{if } x = 0 \end{cases} \] at \( x = 0 \), we need to check the following: 1. **Evaluate \( f(0) \)**: \[ f(0) = 1 \] 2. **Find the limit of \( f(x) \) as \( x \) approaches 0**: We need to compute: \[ \lim_{x \to 0} \frac{1 - \cos x}{x^2} \] To evaluate this limit, we can use the trigonometric identity: \[ 1 - \cos x = 2 \sin^2\left(\frac{x}{2}\right) \] Thus, we can rewrite the limit as: \[ \lim_{x \to 0} \frac{2 \sin^2\left(\frac{x}{2}\right)}{x^2} \] We can also express \( x^2 \) in terms of \( \left(\frac{x}{2}\right)^2 \): \[ x^2 = 4 \left(\frac{x}{2}\right)^2 \] Therefore, the limit becomes: \[ \lim_{x \to 0} \frac{2 \sin^2\left(\frac{x}{2}\right)}{4 \left(\frac{x}{2}\right)^2} = \lim_{x \to 0} \frac{1}{2} \cdot \frac{\sin^2\left(\frac{x}{2}\right)}{\left(\frac{x}{2}\right)^2} \] We know that: \[ \lim_{u \to 0} \frac{\sin u}{u} = 1 \] where \( u = \frac{x}{2} \). Thus: \[ \lim_{x \to 0} \frac{\sin^2\left(\frac{x}{2}\right)}{\left(\frac{x}{2}\right)^2} = 1 \] Therefore, we have: \[ \lim_{x \to 0} \frac{1 - \cos x}{x^2} = \frac{1}{2} \cdot 1 = \frac{1}{2} \] 3. **Compare the limit with \( f(0) \)**: We found that: \[ \lim_{x \to 0} f(x) = \frac{1}{2} \] and \[ f(0) = 1 \] Since the limit as \( x \) approaches 0 is not equal to \( f(0) \): \[ \lim_{x \to 0} f(x) \neq f(0) \] Thus, the function \( f(x) \) is **not continuous** at \( x = 0 \).
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise EXERCISE 5(a) (LONG ANSWER TYPE QUESTIONS (I))|39 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise EXERCISE 5(b) (LONG ANSWER TYPE QUESTIONS (I))|17 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos
  • APPLICATIONS OF THE INTEGRALS

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos
  • DETERMINANTS

    MODERN PUBLICATION|Exercise Chapter test 4|12 Videos

Similar Questions

Explore conceptually related problems

Discuss the continuity of the function : f(x)={{:((|x-2|)/(x-2)", "xne2),(1" ,"x=2):} at x = 2

Discuss the continuity of the function : f(x)={{:((|x-2|)/(2-x)", "xne2),(-1" ,"x=2):} at x = 2

Discuss the continuity of the function f(x)={((|x|)/x", " xne 0),(1", " x=0):} at x=0

Discuss the continuity of the function f(x) ={:{((Sinx)/(x) ", "x lt0 ),(x+1 ", " x ge0):}, at =0.

f(x)={{:((sin2x)/(5x)",when "xne0),(m", when "x=0):} at x = 0

Discuss the continuity of the function f given f(x)=|x| at x=0

Discuss the continuity of the function = f(x) ={(3-x", "x le 0),(x", "x gt 0):} at x=0.

Examine the continuity of the funcation f(x)={{: ((|sinx|)/x",", xne0),(1",",x=0 " at " x=0):}

Discuss the continuity of the function f(x) ={(x", " x ge 0),(2", "x lt0):} at x=0

MODERN PUBLICATION-CONTINUITY AND DIFFERENTIABILITY-EXERCISE 5(a) (SHORT ANSWER TYPE QUESTIONS)
  1. Discuss the continuity of the function f defined by f(x)=1/x , x!=0.

    Text Solution

    |

  2. Discuss the continuity of the function : f(x)={{:(x",if "xge0),(x^(2...

    Text Solution

    |

  3. Discuss the continuity of the function defined byf(x)={x+2, ifx<0-x+2,...

    Text Solution

    |

  4. Examine the continuity of the function : f(x)={{:(x+1" , "xle2),(2x-...

    Text Solution

    |

  5. f(x)={{:((x^(2)-25)/(x-5)",","when",x ne 5),( 10",", "when",x=5):} is ...

    Text Solution

    |

  6. Discuss the continuity of the function : f(x)={{:((|x-2|)/(x-2)", "x...

    Text Solution

    |

  7. Discuss the continuity of the function : f(x)={{:((|x-2|)/(2-x)", "x...

    Text Solution

    |

  8. Discuss the continuity of the function : f(x)={{:((|x-a|)/(x-a)",whe...

    Text Solution

    |

  9. Discuss the continuity of the function f, where f is defined by f(x){{...

    Text Solution

    |

  10. Discuss the continuity of the function f, where f is defined byf(x)={...

    Text Solution

    |

  11. Discuss the continuity of the function : f(x)={{:(x", "0lexlt1/2),(...

    Text Solution

    |

  12. Discuss the continuity of the function : f(x)={{:((1-cosx)/x^(2)", "...

    Text Solution

    |

  13. Show that the function f(x)defined as f(x) = xcos(1/x),x!=0; 0,x=0is c...

    Text Solution

    |

  14. Show that the following functions are continuous at x = 0 : f(x)={{:...

    Text Solution

    |

  15. Test the continuity of the function f (x) : f(x)={{:(x^(2)sin.(1)/(...

    Text Solution

    |

  16. f(x)={{:(cosx",","when",x ge0, ),(-cosx",", "when", x lt0):} is discon...

    Text Solution

    |

  17. Examine the continuity of the function f(x) at x = 0. f(x)={{:(sinx/...

    Text Solution

    |

  18. Examine the continuity of the funcation f(x)={{: ((|sinx|)/x",", xne...

    Text Solution

    |

  19. Examine the continuity of the function f(x) at x = 0. f(x)={{:((tan2...

    Text Solution

    |

  20. Discuss the continuity of the cosine, cosecant, secant and cotangen...

    Text Solution

    |