Home
Class 12
MATHS
Examine the continuity of the function f...

Examine the continuity of the function f(x) at x = 0.
`f(x)={{:(sinx/x" when "xne0),(2" when "x = 0):}`

Text Solution

AI Generated Solution

The correct Answer is:
To examine the continuity of the function \( f(x) \) at \( x = 0 \), we need to check the following conditions: 1. The function \( f(x) \) must be defined at \( x = 0 \). 2. The left-hand limit \( \lim_{x \to 0^-} f(x) \) must exist. 3. The right-hand limit \( \lim_{x \to 0^+} f(x) \) must exist. 4. The left-hand limit, right-hand limit, and the function value at that point must all be equal. Given the function: \[ f(x) = \begin{cases} \frac{\sin x}{x} & \text{when } x \neq 0 \\ 2 & \text{when } x = 0 \end{cases} \] ### Step 1: Check if \( f(0) \) is defined From the definition of the function, we see that: \[ f(0) = 2 \] Thus, \( f(0) \) is defined. ### Step 2: Calculate the left-hand limit as \( x \) approaches 0 We need to find: \[ \lim_{x \to 0^-} f(x) = \lim_{x \to 0^-} \frac{\sin x}{x} \] Using the well-known limit: \[ \lim_{x \to 0} \frac{\sin x}{x} = 1 \] Thus, \[ \lim_{x \to 0^-} f(x) = 1 \] ### Step 3: Calculate the right-hand limit as \( x \) approaches 0 Now we find: \[ \lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} \frac{\sin x}{x} \] Again, using the same limit: \[ \lim_{x \to 0} \frac{\sin x}{x} = 1 \] Thus, \[ \lim_{x \to 0^+} f(x) = 1 \] ### Step 4: Compare the limits and the function value Now we compare the left-hand limit, right-hand limit, and the function value at \( x = 0 \): - Left-hand limit: \( \lim_{x \to 0^-} f(x) = 1 \) - Right-hand limit: \( \lim_{x \to 0^+} f(x) = 1 \) - Function value: \( f(0) = 2 \) Since: \[ \lim_{x \to 0^-} f(x) \neq f(0) \] and \[ \lim_{x \to 0^+} f(x) \neq f(0) \] ### Conclusion The function \( f(x) \) is not continuous at \( x = 0 \). ---
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise EXERCISE 5(a) (LONG ANSWER TYPE QUESTIONS (I))|39 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise EXERCISE 5(b) (LONG ANSWER TYPE QUESTIONS (I))|17 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos
  • APPLICATIONS OF THE INTEGRALS

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos
  • DETERMINANTS

    MODERN PUBLICATION|Exercise Chapter test 4|12 Videos

Similar Questions

Explore conceptually related problems

Examine the continuity of the function f(x) at x = 0. f(x)={{:((tan2x)/(3x)"when "xne0),(3/2" when "x = 0):}

Examine the continuity of the function f(x) at x=0 for f(x)=x/(2|x|) where x!=0

f(x)={{:((sin2x)/(5x)",when "xne0),(m", when "x=0):} at x = 0

Examine the continuity of the funcation f(x)={{: ((|sinx|)/x",", xne0),(1",",x=0 " at " x=0):}

Examine the function for continuity at x = 0 : f(x)={{:(sinx/x" when "xlt0),(x+1" when "xge0):} .

Examine the continuity of f(x) at x=0 if f(x)= (sin 2x)/(2x), x ne 0

Examine the continuity of the function : f(x)={{:((|x-4|)/((x-4))", if "xne4),(0" , if "x=4):} at x = 4.

Show that the following functions are continuous at x = 0 : f(x)={{:(x"cos"1/x" when "xne0),(0" when "x=0):}

Discuss the continuity of the function : f(x)={{:((1-cosx)/x^(2)", "xne0),(1", "x=0):} at x = 0.

Discuss the continuity of the function f(x)={((|x|)/x", " xne 0),(1", " x=0):} at x=0

MODERN PUBLICATION-CONTINUITY AND DIFFERENTIABILITY-EXERCISE 5(a) (SHORT ANSWER TYPE QUESTIONS)
  1. Discuss the continuity of the function f defined by f(x)=1/x , x!=0.

    Text Solution

    |

  2. Discuss the continuity of the function : f(x)={{:(x",if "xge0),(x^(2...

    Text Solution

    |

  3. Discuss the continuity of the function defined byf(x)={x+2, ifx<0-x+2,...

    Text Solution

    |

  4. Examine the continuity of the function : f(x)={{:(x+1" , "xle2),(2x-...

    Text Solution

    |

  5. f(x)={{:((x^(2)-25)/(x-5)",","when",x ne 5),( 10",", "when",x=5):} is ...

    Text Solution

    |

  6. Discuss the continuity of the function : f(x)={{:((|x-2|)/(x-2)", "x...

    Text Solution

    |

  7. Discuss the continuity of the function : f(x)={{:((|x-2|)/(2-x)", "x...

    Text Solution

    |

  8. Discuss the continuity of the function : f(x)={{:((|x-a|)/(x-a)",whe...

    Text Solution

    |

  9. Discuss the continuity of the function f, where f is defined by f(x){{...

    Text Solution

    |

  10. Discuss the continuity of the function f, where f is defined byf(x)={...

    Text Solution

    |

  11. Discuss the continuity of the function : f(x)={{:(x", "0lexlt1/2),(...

    Text Solution

    |

  12. Discuss the continuity of the function : f(x)={{:((1-cosx)/x^(2)", "...

    Text Solution

    |

  13. Show that the function f(x)defined as f(x) = xcos(1/x),x!=0; 0,x=0is c...

    Text Solution

    |

  14. Show that the following functions are continuous at x = 0 : f(x)={{:...

    Text Solution

    |

  15. Test the continuity of the function f (x) : f(x)={{:(x^(2)sin.(1)/(...

    Text Solution

    |

  16. f(x)={{:(cosx",","when",x ge0, ),(-cosx",", "when", x lt0):} is discon...

    Text Solution

    |

  17. Examine the continuity of the function f(x) at x = 0. f(x)={{:(sinx/...

    Text Solution

    |

  18. Examine the continuity of the funcation f(x)={{: ((|sinx|)/x",", xne...

    Text Solution

    |

  19. Examine the continuity of the function f(x) at x = 0. f(x)={{:((tan2...

    Text Solution

    |

  20. Discuss the continuity of the cosine, cosecant, secant and cotangen...

    Text Solution

    |