Home
Class 12
MATHS
Discuss the continuity of f(x) at x = 0 ...

Discuss the continuity of f(x) at x = 0 if :
`f(x)={{:((sqrt(1+x)-sqrt(1-x))/(sinx)", if "xne0),(1" , if "x=0):}`.

Text Solution

AI Generated Solution

The correct Answer is:
To determine the continuity of the function \( f(x) \) at \( x = 0 \), we need to check three things: 1. The value of the function at \( x = 0 \). 2. The left-hand limit as \( x \) approaches \( 0 \). 3. The right-hand limit as \( x \) approaches \( 0 \). If all three values are equal, then the function is continuous at that point. ### Step 1: Find \( f(0) \) Given: \[ f(x) = \begin{cases} \frac{\sqrt{1+x} - \sqrt{1-x}}{\sin x} & \text{if } x \neq 0 \\ 1 & \text{if } x = 0 \end{cases} \] At \( x = 0 \): \[ f(0) = 1 \] ### Step 2: Find the Left-Hand Limit \( \lim_{x \to 0^-} f(x) \) We need to evaluate: \[ \lim_{x \to 0^-} f(x) = \lim_{x \to 0^-} \frac{\sqrt{1+x} - \sqrt{1-x}}{\sin x} \] Substituting \( x = -h \) where \( h \to 0^+ \): \[ \lim_{h \to 0} \frac{\sqrt{1 - h} - \sqrt{1 + h}}{-\sin h} = \lim_{h \to 0} \frac{\sqrt{1 - h} - \sqrt{1 + h}}{-\sin h} \] Now, we can simplify the numerator by multiplying by the conjugate: \[ \lim_{h \to 0} \frac{(\sqrt{1 - h} - \sqrt{1 + h})(\sqrt{1 - h} + \sqrt{1 + h})}{-\sin h (\sqrt{1 - h} + \sqrt{1 + h})} \] This simplifies to: \[ \lim_{h \to 0} \frac{(1 - h) - (1 + h)}{-\sin h (\sqrt{1 - h} + \sqrt{1 + h})} = \lim_{h \to 0} \frac{-2h}{-\sin h (\sqrt{1 - h} + \sqrt{1 + h})} \] Now, we can use the limit \( \lim_{h \to 0} \frac{\sin h}{h} = 1 \): \[ = \lim_{h \to 0} \frac{2h}{\sin h (\sqrt{1 - h} + \sqrt{1 + h})} = \lim_{h \to 0} \frac{2}{\frac{\sin h}{h} (\sqrt{1 - h} + \sqrt{1 + h})} \] As \( h \to 0 \), \( \sqrt{1 - h} \to 1 \) and \( \sqrt{1 + h} \to 1 \): \[ = \frac{2}{1 \cdot (1 + 1)} = \frac{2}{2} = 1 \] ### Step 3: Find the Right-Hand Limit \( \lim_{x \to 0^+} f(x) \) Now we evaluate: \[ \lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} \frac{\sqrt{1+x} - \sqrt{1-x}}{\sin x} \] Substituting \( x = h \) where \( h \to 0^+ \): \[ \lim_{h \to 0} \frac{\sqrt{1 + h} - \sqrt{1 - h}}{\sin h} \] Using the same conjugate multiplication: \[ = \lim_{h \to 0} \frac{(\sqrt{1 + h} - \sqrt{1 - h})(\sqrt{1 + h} + \sqrt{1 - h})}{\sin h (\sqrt{1 + h} + \sqrt{1 - h})} \] This simplifies to: \[ = \lim_{h \to 0} \frac{(1 + h) - (1 - h)}{\sin h (\sqrt{1 + h} + \sqrt{1 - h})} = \lim_{h \to 0} \frac{2h}{\sin h (\sqrt{1 + h} + \sqrt{1 - h})} \] Using the limit \( \lim_{h \to 0} \frac{\sin h}{h} = 1 \): \[ = \lim_{h \to 0} \frac{2}{\frac{\sin h}{h} (\sqrt{1 + h} + \sqrt{1 - h})} = \frac{2}{1 \cdot (1 + 1)} = 1 \] ### Conclusion Now we have: - \( f(0) = 1 \) - \( \lim_{x \to 0^-} f(x) = 1 \) - \( \lim_{x \to 0^+} f(x) = 1 \) Since all three values are equal, we conclude that \( f(x) \) is continuous at \( x = 0 \). ### Final Answer Thus, \( f(x) \) is continuous at \( x = 0 \). ---
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise EXERCISE 5(b) (LONG ANSWER TYPE QUESTIONS (I))|17 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise EXERCISE 5(c) (SHORT ANSWER TYPE QUESTIONS)|34 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise EXERCISE 5(a) (SHORT ANSWER TYPE QUESTIONS)|52 Videos
  • APPLICATIONS OF THE INTEGRALS

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos
  • DETERMINANTS

    MODERN PUBLICATION|Exercise Chapter test 4|12 Videos

Similar Questions

Explore conceptually related problems

Examine the continuity of the function f(x) at x = 0. f(x)={{:(sinx/x" when "xne0),(2" when "x = 0):}

Discuss the continuity of the function : f(x)={{:((1-cosx)/x^(2)", "xne0),(1", "x=0):} at x = 0.

Discuss the continuity of the f(x) at the indicated point: f(x)=|x|+|x-1| at x=0,1

If f(x)=sqrt(1-sqrt(1-x^(2))) then at x=0

If f(x) is continuous at x=0 , where f(x)=(sqrt(1+x)-root3(1+x))/(x) , for x!=0 , then f(0)=

Discuss the continuity of the function f(x) ={:{((Sinx)/(x) ", "x lt0 ),(x+1 ", " x ge0):}, at =0.

Examine the continuity of f, where f is defined by : f(x)={{:(sinx+cosx", if "xne0),(1", if "x=0):} .

Examine the continuity of the funcation f(x)={{: ((|sinx|)/x",", xne0),(1",",x=0 " at " x=0):}

Discuss the continuity of the function f(x)={((|x|)/x", " xne 0),(1", " x=0):} at x=0

MODERN PUBLICATION-CONTINUITY AND DIFFERENTIABILITY-EXERCISE 5(a) (LONG ANSWER TYPE QUESTIONS (I))
  1. Test for continuity of the following function at x = a: f(x)={(x-, a) ...

    Text Solution

    |

  2. Examine the function for continuity at x = 0 : f(x)={{:(sinx/x" wh...

    Text Solution

    |

  3. Discuss the continuity of f(x) at x = 0 if : f(x)={{:((sqrt(1+x)-sqr...

    Text Solution

    |

  4. f(x) = {{:(kx^(2)"," if x le 2),(3", " if x gt 2):} at x = 2

    Text Solution

    |

  5. The function is defined by f(x) = {(kx+1,if, x lepi),(cos x,if, x gt p...

    Text Solution

    |

  6. If the function f(x) = {(kx + 5 ", when " x le 2),(x -1 ", when " x gt...

    Text Solution

    |

  7. f(x)={{:(3k-2x", when "xlt1),(2k+1", when "xge1):} at x = 1

    Text Solution

    |

  8. f(x)={{:(3x-8, if x le 5),(2k, if x gt 5) :} at x = 5

    Text Solution

    |

  9. f(x)={{:((x-1)/(x+1)", "xne1),(lamda-1","x=1):} at x = 1.

    Text Solution

    |

  10. f(x) = {{:((1-cosAx)/(x sinx), if x ne 0),(1/2, if x = 0):} at x = 0

    Text Solution

    |

  11. If the function f(x)={{:((1-cos(ax))/(x^2)," when "xne0),(1," when "x=...

    Text Solution

    |

  12. f(x)={{:((sin2x)/(5x)",when "xne0),(m", when "x=0):} at x = 0

    Text Solution

    |

  13. Let f(x)={:{((kcosx)/(pi-2x)',xne(pi)/(2)),(3",",x=(pi)/(2).):} If l...

    Text Solution

    |

  14. f(x) = {{:((k cosx )/((pi - 2x)"," if x ne (pi)/(2))),(3"," if x = (p...

    Text Solution

    |

  15. f(x)={{:((x^(2)-9)/(x-3)",when "xne3),(k", when "x=3):} at x = 3

    Text Solution

    |

  16. f(x)={{:(((x+3)^(2)-36)/(x-3)", "xne3),(k" , "x=3):} at ...

    Text Solution

    |

  17. For what value of 'k' is the function defined by : f(x)={{:(k(x^(2)+...

    Text Solution

    |

  18. If the function defined by : f(x)={{:(2x-1", "xlt2),(a", "x...

    Text Solution

    |

  19. Given that , f(x)={{:((1-cos4x)/(x^(2)),"if "xlt0),(" a ","if "x=0)...

    Text Solution

    |

  20. Find the values of a and b such that the function defined by f(x) = ...

    Text Solution

    |