Home
Class 12
MATHS
f(x)={{:((x-1)/(x+1)", "xne1),(lamda-1",...

`f(x)={{:((x-1)/(x+1)", "xne1),(lamda-1","x=1):}` at x = 1.

Text Solution

AI Generated Solution

The correct Answer is:
To determine the value of \( \lambda \) such that the function \[ f(x) = \begin{cases} \frac{x-1}{x+1} & \text{if } x \neq 1 \\ \lambda - 1 & \text{if } x = 1 \end{cases} \] is continuous at \( x = 1 \), we need to ensure that the left-hand limit, the right-hand limit, and the function value at \( x = 1 \) are all equal. ### Step 1: Find the left-hand limit as \( x \) approaches 1 The left-hand limit is given by: \[ \lim_{x \to 1^-} f(x) = \lim_{x \to 1^-} \frac{x-1}{x+1} \] Substituting \( x = 1 \): \[ \lim_{x \to 1^-} \frac{x-1}{x+1} = \frac{1-1}{1+1} = \frac{0}{2} = 0 \] ### Step 2: Find the right-hand limit as \( x \) approaches 1 The right-hand limit is also given by: \[ \lim_{x \to 1^+} f(x) = \lim_{x \to 1^+} \frac{x-1}{x+1} \] Substituting \( x = 1 \): \[ \lim_{x \to 1^+} \frac{x-1}{x+1} = \frac{1-1}{1+1} = \frac{0}{2} = 0 \] ### Step 3: Evaluate the function value at \( x = 1 \) From the definition of the function: \[ f(1) = \lambda - 1 \] ### Step 4: Set the limits equal to the function value for continuity For \( f(x) \) to be continuous at \( x = 1 \), we require: \[ \lim_{x \to 1} f(x) = f(1) \] This gives us: \[ 0 = \lambda - 1 \] ### Step 5: Solve for \( \lambda \) From the equation \( 0 = \lambda - 1 \), we can solve for \( \lambda \): \[ \lambda = 1 \] ### Conclusion The value of \( \lambda \) that makes the function continuous at \( x = 1 \) is: \[ \lambda = 1 \] ---
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise EXERCISE 5(b) (LONG ANSWER TYPE QUESTIONS (I))|17 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise EXERCISE 5(c) (SHORT ANSWER TYPE QUESTIONS)|34 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise EXERCISE 5(a) (SHORT ANSWER TYPE QUESTIONS)|52 Videos
  • APPLICATIONS OF THE INTEGRALS

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos
  • DETERMINANTS

    MODERN PUBLICATION|Exercise Chapter test 4|12 Videos

Similar Questions

Explore conceptually related problems

Discuss the continuity of the function : f(x)={{:((1-cosx)/x^(2)", "xne0),(1", "x=0):} at x = 0.

If f(x)={{:(e^(|x|+|x|-1)/(|x|+|x|),":",xne0),(-1,":",x=0):} (where [.] denotes the greatest integer integer function), then

What is the value of k for which the following function f(x) is continuous for all x? f(x)={{:((x^(3)-3x+2)/((x-1)^(2)),"for "xne1),(k,"for "x=1):}

f (x) = {{:((|x^(2)- x|)/(x^(2) - x),xne 0"," 1),(1",", x = 0),(-1",", x = 0 ):} is continuose for all :

MODERN PUBLICATION-CONTINUITY AND DIFFERENTIABILITY-EXERCISE 5(a) (LONG ANSWER TYPE QUESTIONS (I))
  1. f(x)={{:(3k-2x", when "xlt1),(2k+1", when "xge1):} at x = 1

    Text Solution

    |

  2. f(x)={{:(3x-8, if x le 5),(2k, if x gt 5) :} at x = 5

    Text Solution

    |

  3. f(x)={{:((x-1)/(x+1)", "xne1),(lamda-1","x=1):} at x = 1.

    Text Solution

    |

  4. f(x) = {{:((1-cosAx)/(x sinx), if x ne 0),(1/2, if x = 0):} at x = 0

    Text Solution

    |

  5. If the function f(x)={{:((1-cos(ax))/(x^2)," when "xne0),(1," when "x=...

    Text Solution

    |

  6. f(x)={{:((sin2x)/(5x)",when "xne0),(m", when "x=0):} at x = 0

    Text Solution

    |

  7. Let f(x)={:{((kcosx)/(pi-2x)',xne(pi)/(2)),(3",",x=(pi)/(2).):} If l...

    Text Solution

    |

  8. f(x) = {{:((k cosx )/((pi - 2x)"," if x ne (pi)/(2))),(3"," if x = (p...

    Text Solution

    |

  9. f(x)={{:((x^(2)-9)/(x-3)",when "xne3),(k", when "x=3):} at x = 3

    Text Solution

    |

  10. f(x)={{:(((x+3)^(2)-36)/(x-3)", "xne3),(k" , "x=3):} at ...

    Text Solution

    |

  11. For what value of 'k' is the function defined by : f(x)={{:(k(x^(2)+...

    Text Solution

    |

  12. If the function defined by : f(x)={{:(2x-1", "xlt2),(a", "x...

    Text Solution

    |

  13. Given that , f(x)={{:((1-cos4x)/(x^(2)),"if "xlt0),(" a ","if "x=0)...

    Text Solution

    |

  14. Find the values of a and b such that the function defined by f(x) = ...

    Text Solution

    |

  15. Determine the constants 'a' and 'b' so that the function 'f' defined b...

    Text Solution

    |

  16. Determine the constants 'a' and 'b' so that the function 'f' defined b...

    Text Solution

    |

  17. If the function f(x)={{:(3ax+b,"for "xgt1),(" " 11,"when " x=1),(5...

    Text Solution

    |

  18. Find the values of 'a' and 'b' so that the following function is conti...

    Text Solution

    |

  19. Find 'a' and 'b' if the function : f(x)={{:((sinx)/(x)" , "-2lexlt0)...

    Text Solution

    |

  20. Determine the values of 'a' and 'b' such that the following function i...

    Text Solution

    |