Home
Class 12
MATHS
f(x) = {{:((1-cosAx)/(x sinx), if x ne 0...

`f(x) = {{:((1-cosAx)/(x sinx), if x ne 0),(1/2, if x = 0):}` at `x = 0 `

Text Solution

AI Generated Solution

The correct Answer is:
To determine the value of \( A \) such that the function \[ f(x) = \begin{cases} \frac{1 - \cos(Ax)}{x \sin x} & \text{if } x \neq 0 \\ \frac{1}{2} & \text{if } x = 0 \end{cases} \] is continuous at \( x = 0 \), we need to ensure that the limit of \( f(x) \) as \( x \) approaches 0 equals \( f(0) \). ### Step 1: Find \( f(0) \) From the definition of the function, we have: \[ f(0) = \frac{1}{2} \] ### Step 2: Compute the limit as \( x \) approaches 0 We need to compute: \[ \lim_{x \to 0} f(x) = \lim_{x \to 0} \frac{1 - \cos(Ax)}{x \sin x} \] ### Step 3: Use the identity \( 1 - \cos(Ax) = 2 \sin^2\left(\frac{Ax}{2}\right) \) Substituting this identity into the limit gives: \[ \lim_{x \to 0} \frac{2 \sin^2\left(\frac{Ax}{2}\right)}{x \sin x} \] ### Step 4: Rewrite the limit We can rewrite the limit as: \[ \lim_{x \to 0} \frac{2 \sin^2\left(\frac{Ax}{2}\right)}{x^2} \cdot \frac{x^2}{x \sin x} \] ### Step 5: Apply the limit \( \lim_{x \to 0} \frac{\sin x}{x} = 1 \) We know that: \[ \lim_{x \to 0} \frac{\sin x}{x} = 1 \] Thus, we can rewrite the limit as: \[ \lim_{x \to 0} \frac{2 \sin^2\left(\frac{Ax}{2}\right)}{x^2} \cdot \frac{1}{\lim_{x \to 0} \frac{\sin x}{x}} = \lim_{x \to 0} \frac{2 \sin^2\left(\frac{Ax}{2}\right)}{x^2} \] ### Step 6: Use the substitution \( u = \frac{Ax}{2} \) Let \( u = \frac{Ax}{2} \), then as \( x \to 0 \), \( u \to 0 \) as well. Therefore, we have: \[ x = \frac{2u}{A} \implies x^2 = \frac{4u^2}{A^2} \] Substituting this into the limit gives: \[ \lim_{u \to 0} \frac{2 \sin^2(u)}{\frac{4u^2}{A^2}} = \lim_{u \to 0} \frac{2A^2 \sin^2(u)}{4u^2} = \frac{A^2}{2} \lim_{u \to 0} \frac{\sin^2(u)}{u^2} \] ### Step 7: Evaluate the limit Using \( \lim_{u \to 0} \frac{\sin^2(u)}{u^2} = 1 \): \[ \lim_{x \to 0} f(x) = \frac{A^2}{2} \cdot 1 = \frac{A^2}{2} \] ### Step 8: Set the limit equal to \( f(0) \) For continuity at \( x = 0 \): \[ \frac{A^2}{2} = \frac{1}{2} \] ### Step 9: Solve for \( A \) Multiplying both sides by 2 gives: \[ A^2 = 1 \] Taking the square root of both sides results in: \[ A = \pm 1 \] ### Final Answer Thus, the values of \( A \) that make the function continuous at \( x = 0 \) are: \[ A = 1 \quad \text{or} \quad A = -1 \]
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise EXERCISE 5(b) (LONG ANSWER TYPE QUESTIONS (I))|17 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise EXERCISE 5(c) (SHORT ANSWER TYPE QUESTIONS)|34 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise EXERCISE 5(a) (SHORT ANSWER TYPE QUESTIONS)|52 Videos
  • APPLICATIONS OF THE INTEGRALS

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos
  • DETERMINANTS

    MODERN PUBLICATION|Exercise Chapter test 4|12 Videos

Similar Questions

Explore conceptually related problems

f(x) = {{:((1-coskx)/(x sinx), if x ne 0),(1/2, if x = 0):} at x = 0

f(x)={{:((1-cos2x)/(x^(2)),if x ne 0),(5, if x = 0):} at x = 0 .

f(x) = {{:(x^(2)sin'1/x, if x ne 0),(0, if x = 0):} at x = 0 .

f(x)={{:(|x|cos'1/x, if x ne 0),(0, if x =0):} at x = 0 .

f(x)={{:(|x|cos\ 1/x, if x ne 0),(0, if x =0):} at x = 0 .

f(x)={{:(e^(1//x)/(1+e^(1//x)),if x ne 0),(0,if x = 0):} at x = 0

f(x)={{:(e^(1//x)/(1+e^(1//x)),if x ne 0),(0,if x = 0):}at x = 0

MODERN PUBLICATION-CONTINUITY AND DIFFERENTIABILITY-EXERCISE 5(a) (LONG ANSWER TYPE QUESTIONS (I))
  1. f(x)={{:(3x-8, if x le 5),(2k, if x gt 5) :} at x = 5

    Text Solution

    |

  2. f(x)={{:((x-1)/(x+1)", "xne1),(lamda-1","x=1):} at x = 1.

    Text Solution

    |

  3. f(x) = {{:((1-cosAx)/(x sinx), if x ne 0),(1/2, if x = 0):} at x = 0

    Text Solution

    |

  4. If the function f(x)={{:((1-cos(ax))/(x^2)," when "xne0),(1," when "x=...

    Text Solution

    |

  5. f(x)={{:((sin2x)/(5x)",when "xne0),(m", when "x=0):} at x = 0

    Text Solution

    |

  6. Let f(x)={:{((kcosx)/(pi-2x)',xne(pi)/(2)),(3",",x=(pi)/(2).):} If l...

    Text Solution

    |

  7. f(x) = {{:((k cosx )/((pi - 2x)"," if x ne (pi)/(2))),(3"," if x = (p...

    Text Solution

    |

  8. f(x)={{:((x^(2)-9)/(x-3)",when "xne3),(k", when "x=3):} at x = 3

    Text Solution

    |

  9. f(x)={{:(((x+3)^(2)-36)/(x-3)", "xne3),(k" , "x=3):} at ...

    Text Solution

    |

  10. For what value of 'k' is the function defined by : f(x)={{:(k(x^(2)+...

    Text Solution

    |

  11. If the function defined by : f(x)={{:(2x-1", "xlt2),(a", "x...

    Text Solution

    |

  12. Given that , f(x)={{:((1-cos4x)/(x^(2)),"if "xlt0),(" a ","if "x=0)...

    Text Solution

    |

  13. Find the values of a and b such that the function defined by f(x) = ...

    Text Solution

    |

  14. Determine the constants 'a' and 'b' so that the function 'f' defined b...

    Text Solution

    |

  15. Determine the constants 'a' and 'b' so that the function 'f' defined b...

    Text Solution

    |

  16. If the function f(x)={{:(3ax+b,"for "xgt1),(" " 11,"when " x=1),(5...

    Text Solution

    |

  17. Find the values of 'a' and 'b' so that the following function is conti...

    Text Solution

    |

  18. Find 'a' and 'b' if the function : f(x)={{:((sinx)/(x)" , "-2lexlt0)...

    Text Solution

    |

  19. Determine the values of 'a' and 'b' such that the following function i...

    Text Solution

    |

  20. Let f(x)={{:((1-sin^(3)x)/(3cos^(2)x),"if "x lt(pi)/(2)),(a,"if "x=(pi...

    Text Solution

    |