Home
Class 12
MATHS
Differentiate the following w.r.t. x : ...

Differentiate the following w.r.t. x :
`sin^(-1)((2x)/(1+x^(2))),-1ltxlt1`

Text Solution

AI Generated Solution

The correct Answer is:
To differentiate the function \( y = \sin^{-1}\left(\frac{2x}{1+x^2}\right) \) with respect to \( x \), we will use the chain rule and the quotient rule. ### Step-by-Step Solution: 1. **Identify the function**: Let \( u = \frac{2x}{1+x^2} \). Then, we can rewrite the function as: \[ y = \sin^{-1}(u) \] 2. **Differentiate \( y \) with respect to \( u \)**: The derivative of \( \sin^{-1}(u) \) with respect to \( u \) is: \[ \frac{dy}{du} = \frac{1}{\sqrt{1-u^2}} \] 3. **Differentiate \( u \) with respect to \( x \)**: We need to differentiate \( u = \frac{2x}{1+x^2} \) using the quotient rule. The quotient rule states that if \( u = \frac{f(x)}{g(x)} \), then: \[ \frac{du}{dx} = \frac{f'(x)g(x) - f(x)g'(x)}{(g(x))^2} \] Here, \( f(x) = 2x \) and \( g(x) = 1+x^2 \). - Calculate \( f'(x) = 2 \) - Calculate \( g'(x) = 2x \) Now applying the quotient rule: \[ \frac{du}{dx} = \frac{(2)(1+x^2) - (2x)(2x)}{(1+x^2)^2} = \frac{2 + 2x^2 - 4x^2}{(1+x^2)^2} = \frac{2 - 2x^2}{(1+x^2)^2} = \frac{2(1-x^2)}{(1+x^2)^2} \] 4. **Combine using the chain rule**: Now, using the chain rule: \[ \frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx} \] Substituting the derivatives we found: \[ \frac{dy}{dx} = \frac{1}{\sqrt{1-u^2}} \cdot \frac{2(1-x^2)}{(1+x^2)^2} \] 5. **Substitute back for \( u \)**: We need to find \( 1 - u^2 \): \[ u^2 = \left(\frac{2x}{1+x^2}\right)^2 = \frac{4x^2}{(1+x^2)^2} \] Therefore: \[ 1 - u^2 = 1 - \frac{4x^2}{(1+x^2)^2} = \frac{(1+x^2)^2 - 4x^2}{(1+x^2)^2} = \frac{1 + 2x^2 + x^4 - 4x^2}{(1+x^2)^2} = \frac{1 - 2x^2 + x^4}{(1+x^2)^2} \] 6. **Final expression**: Now substituting \( 1 - u^2 \) into the derivative: \[ \frac{dy}{dx} = \frac{1}{\sqrt{\frac{1 - 2x^2 + x^4}{(1+x^2)^2}}} \cdot \frac{2(1-x^2)}{(1+x^2)^2} \] Simplifying: \[ \frac{dy}{dx} = \frac{2(1-x^2)}{(1+x^2)^2} \cdot \frac{\sqrt{(1+x^2)^2}}{\sqrt{1 - 2x^2 + x^4}} = \frac{2(1-x^2)}{(1 - 2x^2 + x^4)} \] ### Final Answer: \[ \frac{dy}{dx} = \frac{2(1-x^2)}{1 - 2x^2 + x^4} \]
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise EXERCISE 5(e) (LONG ANSWER TYPE QUESTIONS (I))|22 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise EXERCISE 5(e) (LONG ANSWER TYPE QUESTIONS (II))|5 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise EXERCISE 5(d) (SHORT ANSWER TYPE QUESTIONS)|26 Videos
  • APPLICATIONS OF THE INTEGRALS

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos
  • DETERMINANTS

    MODERN PUBLICATION|Exercise Chapter test 4|12 Videos

Similar Questions

Explore conceptually related problems

Differentiate the following w.r.t. x : cos^(-1)((2x)/(1+x^(2))),-1ltxlt1

Differentiate the following w.r.t. x : (sin^(-1)x)^(x)

Differentiate the following w.r.t. x : sin(2sin^(-1)x)

Differentiate the following w.r.t.x : sin(x^2)

Differentiate the following w.r.t. x : tan^(-1)((2x)/(1-x^(2))),0ltxlt1

Differentiate the following w.r.t. x : x^(sin^(-1)x)

Differentiate the following w.r.t. x : e^(sin^(-1)x)

Differentiate the following w.r.t. x : e^(sin^(-1)x)

Differentiate the following w.r.t.x : sin(x^(2))

Differentiate the following w.r.t.x:e^(sin^(-1)x)

MODERN PUBLICATION-CONTINUITY AND DIFFERENTIABILITY-EXERCISE 5(e) (SHORT ANSWER TYPE QUESTIONS)
  1. Differentiate the following w.r.t. x : xsec^(-1)x.

    Text Solution

    |

  2. Differentiate the following w.r.t. x : cos^(-1)(sinx)

    Text Solution

    |

  3. Differentiate the following w.r.t. x: (i)sin^(-1)2x" "(ii)tan^(-...

    Text Solution

    |

  4. Differentiate the following w.r.t. x : (cot^(-1)x)^(2)

    Text Solution

    |

  5. Differentiate the following w.r.t. x : sin(2sin^(-1)x)

    Text Solution

    |

  6. Find the derivatives w.r.t. x : tan^(-1)((sinx)/(1+cosx))

    Text Solution

    |

  7. "Tan"^(-1)(cosx)/(1+sinx)=

    Text Solution

    |

  8. cot^(-1)((1+cosx)/(sinx))

    Text Solution

    |

  9. Differentiate the following w.r.t. x : sin^(-1)(1-2x^(2))

    Text Solution

    |

  10. sin^(-1)(3x-4x^(3))

    Text Solution

    |

  11. Differentiate the following w.r.t. x : cos^(-1)(4x^(3)-3x),-1ltxlt1

    Text Solution

    |

  12. Differentiate the following w.r.t. x : sin^(-1)((2x)/(1+x^(2))),-1lt...

    Text Solution

    |

  13. "cosec"^(-1)((1+x^(2))/(2x))

    Text Solution

    |

  14. Differentiate the following w.r.t. x : sin^(-1)((1-x^(2))/(1+x^(2)))...

    Text Solution

    |

  15. Differentiate the following w.r.t. x : cos^(-1)((1-x^(2))/(1+x^(2)))...

    Text Solution

    |

  16. Differentiate the following w.r.t. x : cos^(-1)((2x)/(1+x^(2))),-1lt...

    Text Solution

    |

  17. Differentiate the following w.r.t. x : tan^(-1)((2x)/(1-x^(2))),0ltx...

    Text Solution

    |

  18. tan^(-1)((3x-x^(3))/(1-3x^(2)))

    Text Solution

    |

  19. निम्न फलन का x के सापेक्ष अवकल गुणांक ज्ञात कीजिए - tan ^(-1) [(x^(1/...

    Text Solution

    |

  20. "tan"^(-1)(x)/(sqrt(a^(2)-x^(2)))

    Text Solution

    |