Home
Class 12
MATHS
Differentiate the following w.r.t. x : ...

Differentiate the following w.r.t. x :
`cos^(-1)((2x)/(1+x^(2))),-1ltxlt1`

Text Solution

AI Generated Solution

The correct Answer is:
To differentiate the function \( y = \cos^{-1}\left(\frac{2x}{1+x^2}\right) \) with respect to \( x \), we will follow these steps: ### Step 1: Identify the function and apply the chain rule Let \( u = \frac{2x}{1+x^2} \). Then, we can express \( y \) as: \[ y = \cos^{-1}(u) \] To find \(\frac{dy}{dx}\), we will use the chain rule: \[ \frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx} \] ### Step 2: Differentiate \( y \) with respect to \( u \) The derivative of \( \cos^{-1}(u) \) is: \[ \frac{dy}{du} = -\frac{1}{\sqrt{1-u^2}} \] ### Step 3: Differentiate \( u \) with respect to \( x \) Now we need to differentiate \( u = \frac{2x}{1+x^2} \). We will use the quotient rule: \[ \frac{du}{dx} = \frac{(1+x^2)(2) - (2x)(2x)}{(1+x^2)^2} \] Simplifying this: \[ \frac{du}{dx} = \frac{2(1+x^2) - 4x^2}{(1+x^2)^2} = \frac{2 - 2x^2}{(1+x^2)^2} = \frac{2(1-x^2)}{(1+x^2)^2} \] ### Step 4: Substitute \( u \) back into the derivative Now we can substitute \( u \) back into our expression for \(\frac{dy}{dx}\): \[ \frac{dy}{dx} = -\frac{1}{\sqrt{1-u^2}} \cdot \frac{du}{dx} \] Substituting \( u = \frac{2x}{1+x^2} \): \[ 1 - u^2 = 1 - \left(\frac{2x}{1+x^2}\right)^2 = 1 - \frac{4x^2}{(1+x^2)^2} \] Finding a common denominator: \[ 1 - u^2 = \frac{(1+x^2)^2 - 4x^2}{(1+x^2)^2} = \frac{1 + 2x^2 + x^4 - 4x^2}{(1+x^2)^2} = \frac{1 - 2x^2 + x^4}{(1+x^2)^2} = \frac{(1-x^2)^2}{(1+x^2)^2} \] Thus, \[ \sqrt{1 - u^2} = \frac{1-x^2}{1+x^2} \] ### Step 5: Combine everything to find \(\frac{dy}{dx}\) Now substituting back: \[ \frac{dy}{dx} = -\frac{1}{\frac{1-x^2}{1+x^2}} \cdot \frac{2(1-x^2)}{(1+x^2)^2} \] This simplifies to: \[ \frac{dy}{dx} = -\frac{2(1-x^2)}{(1+x^2)^2} \cdot \frac{1+x^2}{1-x^2} = -\frac{2}{1+x^2} \] ### Final Answer Thus, the derivative of \( y = \cos^{-1}\left(\frac{2x}{1+x^2}\right) \) with respect to \( x \) is: \[ \frac{dy}{dx} = -\frac{2}{1+x^2} \]
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise EXERCISE 5(e) (LONG ANSWER TYPE QUESTIONS (I))|22 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise EXERCISE 5(e) (LONG ANSWER TYPE QUESTIONS (II))|5 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise EXERCISE 5(d) (SHORT ANSWER TYPE QUESTIONS)|26 Videos
  • APPLICATIONS OF THE INTEGRALS

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos
  • DETERMINANTS

    MODERN PUBLICATION|Exercise Chapter test 4|12 Videos

Similar Questions

Explore conceptually related problems

Differentiate the following w.r.t. x : sin^(-1)((2x)/(1+x^(2))),-1ltxlt1

Differentiate the following w.r.t. x : cos^(-1)(sinx)

Differentiate the following w.r.t. x : cos(x^(x))

Differentiate the following w.r.t. x : cos^(-1)(x/(x+1))

Differentiate the following w.r.t. x : e^(cos^(-1)x^(2)

Differentiate the following w.r.t. x : (cot^(-1)x)^(2)

Differentiate the following w.r.t. x : cot^(-1)((1+x)/(1-x))

Differentiate the following w.r.t. x : x^(cos^(-1)x)

Differentiate the following w.r.t. x : cos^(-1)((1-x^(2))/(1+x^(2))),0ltxlt1

Differentiate the following w.r.t. x : tan^(-1)((2x)/(1-x^(2))),0ltxlt1

MODERN PUBLICATION-CONTINUITY AND DIFFERENTIABILITY-EXERCISE 5(e) (SHORT ANSWER TYPE QUESTIONS)
  1. Differentiate the following w.r.t. x : xsec^(-1)x.

    Text Solution

    |

  2. Differentiate the following w.r.t. x : cos^(-1)(sinx)

    Text Solution

    |

  3. Differentiate the following w.r.t. x: (i)sin^(-1)2x" "(ii)tan^(-...

    Text Solution

    |

  4. Differentiate the following w.r.t. x : (cot^(-1)x)^(2)

    Text Solution

    |

  5. Differentiate the following w.r.t. x : sin(2sin^(-1)x)

    Text Solution

    |

  6. Find the derivatives w.r.t. x : tan^(-1)((sinx)/(1+cosx))

    Text Solution

    |

  7. "Tan"^(-1)(cosx)/(1+sinx)=

    Text Solution

    |

  8. cot^(-1)((1+cosx)/(sinx))

    Text Solution

    |

  9. Differentiate the following w.r.t. x : sin^(-1)(1-2x^(2))

    Text Solution

    |

  10. sin^(-1)(3x-4x^(3))

    Text Solution

    |

  11. Differentiate the following w.r.t. x : cos^(-1)(4x^(3)-3x),-1ltxlt1

    Text Solution

    |

  12. Differentiate the following w.r.t. x : sin^(-1)((2x)/(1+x^(2))),-1lt...

    Text Solution

    |

  13. "cosec"^(-1)((1+x^(2))/(2x))

    Text Solution

    |

  14. Differentiate the following w.r.t. x : sin^(-1)((1-x^(2))/(1+x^(2)))...

    Text Solution

    |

  15. Differentiate the following w.r.t. x : cos^(-1)((1-x^(2))/(1+x^(2)))...

    Text Solution

    |

  16. Differentiate the following w.r.t. x : cos^(-1)((2x)/(1+x^(2))),-1lt...

    Text Solution

    |

  17. Differentiate the following w.r.t. x : tan^(-1)((2x)/(1-x^(2))),0ltx...

    Text Solution

    |

  18. tan^(-1)((3x-x^(3))/(1-3x^(2)))

    Text Solution

    |

  19. निम्न फलन का x के सापेक्ष अवकल गुणांक ज्ञात कीजिए - tan ^(-1) [(x^(1/...

    Text Solution

    |

  20. "tan"^(-1)(x)/(sqrt(a^(2)-x^(2)))

    Text Solution

    |