Home
Class 12
MATHS
Find (d^(2)y)/(dx^(2)) in the following ...

Find `(d^(2)y)/(dx^(2))` in the following
`x=at^(2),y=2at`

Text Solution

AI Generated Solution

The correct Answer is:
To find \(\frac{d^2y}{dx^2}\) for the given parametric equations \(x = at^2\) and \(y = 2at\), we will follow these steps: ### Step 1: Find \(\frac{dy}{dt}\) and \(\frac{dx}{dt}\) Given: - \(x = at^2\) - \(y = 2at\) We differentiate both equations with respect to \(t\): \[ \frac{dx}{dt} = \frac{d}{dt}(at^2) = 2at \] \[ \frac{dy}{dt} = \frac{d}{dt}(2at) = 2a \] ### Step 2: Find \(\frac{dy}{dx}\) Using the chain rule, we can find \(\frac{dy}{dx}\): \[ \frac{dy}{dx} = \frac{dy/dt}{dx/dt} = \frac{2a}{2at} = \frac{1}{t} \] ### Step 3: Find \(\frac{d^2y}{dx^2}\) To find \(\frac{d^2y}{dx^2}\), we need to differentiate \(\frac{dy}{dx}\) with respect to \(x\): Using the formula for the second derivative in parametric form: \[ \frac{d^2y}{dx^2} = \frac{d}{dx}\left(\frac{dy}{dx}\right) = \frac{d}{dt}\left(\frac{dy}{dx}\right) \cdot \frac{dt}{dx} \] First, we differentiate \(\frac{dy}{dx}\) with respect to \(t\): \[ \frac{d}{dt}\left(\frac{dy}{dx}\right) = \frac{d}{dt}\left(\frac{1}{t}\right) = -\frac{1}{t^2} \] Next, we need \(\frac{dt}{dx}\): From \(\frac{dx}{dt} = 2at\), we find: \[ \frac{dt}{dx} = \frac{1}{\frac{dx}{dt}} = \frac{1}{2at} \] Now substituting back into the formula for \(\frac{d^2y}{dx^2}\): \[ \frac{d^2y}{dx^2} = -\frac{1}{t^2} \cdot \frac{1}{2at} = -\frac{1}{2at^3} \] ### Final Answer Thus, the second derivative \(\frac{d^2y}{dx^2}\) is: \[ \frac{d^2y}{dx^2} = -\frac{1}{2at^3} \]
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise EXERCISE 5(l) (SHORT ANSWER TYPE QUESTIONS)|15 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise EXERCISE 5(l) (LONG ANSWER TYPE QUESTIONS (I))|23 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise EXERCISE 5(k) (SHORT ANSWER TYPE QUESTIONS)|19 Videos
  • APPLICATIONS OF THE INTEGRALS

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos
  • DETERMINANTS

    MODERN PUBLICATION|Exercise Chapter test 4|12 Videos

Similar Questions

Explore conceptually related problems

Find (d^(2)y)/(dx^(2)) in the following x=(2at^(2))/(1+t),y=(3at)/(1+t)

Find (d^(2)y)/(dx^(2)) in the following x=acos^(3)theta,y=asin^(3)theta

Find (d^(2)y)/(dx^(2)) in the following x=a(cost+tsint),y=a(sint-tcost)

Find (d^(2)y)/(dx^(2)) in the following x=acos^(3)theta,y=bsin^(3)theta

Find (d^(2)y)/(dx^(2)) in the following If x^(2/3)+y^(2/3)=a^(2/3),"find "(d^(2)y)/(dx^(2))

Find (d^(2)y)/(dx^(2)) in the following x=acostheta,y=bsintheta

Find (d^(2)y)/(dx^(2)) in the following If x=acos^(3)thetaandy=asin^(3)theta , then find the value of (d^(2)y)/(dx^(2))" at "theta=pi/6 .

Find (d^(2)y)/(dx^(2)) in the following x=a(theta+sintheta),y=a(1+costheta)

Find (d^(2)y)/(dx^(2)) when y=logx/x .

Find (d^(2)y)/(dx^(2))" when "y=logx+x .

MODERN PUBLICATION-CONTINUITY AND DIFFERENTIABILITY-EXERCISE 5(k) (LONG ANSWER TYPE QUESTIONS (I))
  1. If e^y(x+1)=1,s howt h a t(d^2y)/(dx^2)=((dy)/(dx))^2dot

    Text Solution

    |

  2. If y=Asinx+Bcosx, prove that (d^(2)y)/(dx^(2))+y=0.

    Text Solution

    |

  3. Find (d^(2)y)/(dx^(2)) in the following x=at^(2),y=2at

    Text Solution

    |

  4. Find (d^(2)y)/(dx^(2)) in the following x=(2at^(2))/(1+t),y=(3at)/(1...

    Text Solution

    |

  5. Find (d^(2)y)/(dx^(2)) in the following x=acostheta,y=bsintheta

    Text Solution

    |

  6. Find (d^(2)y)/(dx^(2)) in the following x=acos^(3)theta,y=asin^(3)th...

    Text Solution

    |

  7. Find (d^(2)y)/(dx^(2)) in the following x=acos^(3)theta,y=bsin^(3)th...

    Text Solution

    |

  8. Find (d^(2)y)/(dx^(2)) in the following If x^(2/3)+y^(2/3)=a^(2/3),"...

    Text Solution

    |

  9. Find (d^(2)y)/(dx^(2)) in the following If x=acos^(3)thetaandy=asin^...

    Text Solution

    |

  10. Find (d^(2)y)/(dx^(2)) in the following x=a(cost+tsint),y=a(sint-tco...

    Text Solution

    |

  11. Find (d^(2)y)/(dx^(2)) in the following x=a(theta+sintheta),y=a(1+co...

    Text Solution

    |

  12. Find (d^(2)y)/(dx^(2))" at "theta=pi/2 when : x=a(theta+sintheta),y=...

    Text Solution

    |

  13. Find (d^(2)y)/(dx^(2))" at "theta=pi/2 when : x=a(theta-sintheta),y=...

    Text Solution

    |

  14. Find (d^(2)y)/(dx^(2))" at "theta=pi/2 when : x=a(1-costheta),y=a(th...

    Text Solution

    |

  15. Find (d^(2)y)/(dx^(2))" at "theta=pi/2 when : x=a(theta-sintheta),y=...

    Text Solution

    |

  16. Find (d^(2)y)/(dx^(2))" at "theta=pi/4 when : x=a(costheta+logtanthe...

    Text Solution

    |

  17. If x=cost+logtant/2,\ \ y=sint , then find the value of (d^2y)/(dt^2) ...

    Text Solution

    |

  18. Find (d^(2)y)/(dx^(2)) when : x=2costheta-cos2thetaandy=2sintheta-si...

    Text Solution

    |

  19. If x=a(cos 2 theta+2 theta sin 2 theta) " and" y=a(sin 2 theta - 2 the...

    Text Solution

    |

  20. If x=asint\ and y=a(cost+logtant/2) , find (d^2\ y)/(dx^2)

    Text Solution

    |