Home
Class 12
MATHS
Find (d^(2)y)/(dx^(2)) in the following ...

Find `(d^(2)y)/(dx^(2))` in the following
`x=(2at^(2))/(1+t),y=(3at)/(1+t)`

Text Solution

AI Generated Solution

The correct Answer is:
To find \(\frac{d^2y}{dx^2}\) given the parametric equations \(x = \frac{2at^2}{1+t}\) and \(y = \frac{3at}{1+t}\), we will follow these steps: ### Step 1: Differentiate \(x\) and \(y\) with respect to \(t\) First, we differentiate \(x\) and \(y\) with respect to \(t\). 1. **Differentiate \(x\)**: \[ x = \frac{2at^2}{1+t} \] Using the quotient rule: \[ \frac{dx}{dt} = \frac{(1+t)(4at) - 2at^2(1)}{(1+t)^2} = \frac{4at + 4at^2 - 2at^2}{(1+t)^2} = \frac{4at + 2at^2}{(1+t)^2} = \frac{2at(2+t)}{(1+t)^2} \] 2. **Differentiate \(y\)**: \[ y = \frac{3at}{1+t} \] Using the quotient rule: \[ \frac{dy}{dt} = \frac{(1+t)(3a) - 3at(1)}{(1+t)^2} = \frac{3a + 3at - 3at}{(1+t)^2} = \frac{3a}{(1+t)^2} \] ### Step 2: Find \(\frac{dy}{dx}\) Now, we can find \(\frac{dy}{dx}\) using the chain rule: \[ \frac{dy}{dx} = \frac{dy/dt}{dx/dt} = \frac{\frac{3a}{(1+t)^2}}{\frac{2at(2+t)}{(1+t)^2}} = \frac{3a}{2at(2+t)} = \frac{3}{2t(2+t)} \] ### Step 3: Differentiate \(\frac{dy}{dx}\) to find \(\frac{d^2y}{dx^2}\) Now, we differentiate \(\frac{dy}{dx}\) with respect to \(t\) to find \(\frac{d^2y}{dx^2}\): \[ \frac{d^2y}{dx^2} = \frac{d}{dt}\left(\frac{dy}{dx}\right) \cdot \frac{1}{\frac{dx}{dt}} \] 1. **Differentiate \(\frac{dy}{dx}\)**: \[ \frac{dy}{dx} = \frac{3}{2t(2+t)} \] Using the quotient rule: \[ \frac{d}{dt}\left(\frac{3}{2t(2+t)}\right) = \frac{0 \cdot (2t(2+t)) - 3 \cdot (2(2+t) + 2t)}{(2t(2+t))^2} = \frac{-3(4 + 2t)}{(2t(2+t))^2} \] 2. **Substituting \(\frac{dx}{dt}\)**: \[ \frac{dx}{dt} = \frac{2at(2+t)}{(1+t)^2} \] Putting it all together: \[ \frac{d^2y}{dx^2} = \frac{-3(4 + 2t)}{(2t(2+t))^2} \cdot \frac{(1+t)^2}{2at(2+t)} \] This simplifies to: \[ \frac{d^2y}{dx^2} = \frac{-3(4 + 2t)(1+t)^2}{2a(2t(2+t))^3} \] ### Final Result Thus, the second derivative \(\frac{d^2y}{dx^2}\) is: \[ \frac{d^2y}{dx^2} = \frac{-3(4 + 2t)(1+t)^2}{2a(2t(2+t))^3} \]
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise EXERCISE 5(l) (SHORT ANSWER TYPE QUESTIONS)|15 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise EXERCISE 5(l) (LONG ANSWER TYPE QUESTIONS (I))|23 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise EXERCISE 5(k) (SHORT ANSWER TYPE QUESTIONS)|19 Videos
  • APPLICATIONS OF THE INTEGRALS

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos
  • DETERMINANTS

    MODERN PUBLICATION|Exercise Chapter test 4|12 Videos

Similar Questions

Explore conceptually related problems

Find dy/dx: x=(2at)/(1+t^2), y=(a(1-t^2))/(1+t^2)

Find dy/dx if x=(2at)/(1+t^2) , y=(a(1-t^2))/(1+t^2)

If x=at^(2),y=2at, then (d^(2)y)/(dx^(2)) is equal to ( a )-(1)/(t^(2))( b) (1)/(2at^(2))(c)-(1)/(t^(3)) (d) (1)/(2at^(3))

Find (dy)/(dx), when x=(1-t^(2))/(1+t^(2)) and y=(2t)/(1+t^(2))

Find (dy)/(dx), when x=(2t)/(1+t^(2)) and y=(1-t^(2))/(1+t^(2))

Find (dy)/(dx), when x=(3at)/(1+t^(2)) and y=(3at^(2))/(1+t^(2))

Find (dy)/(dx) if x=(3a t)/(1+t^3) ; y=(3a t^2)/(1+t^3)

If x=3tan t and y=3sec t then find (d^(2)y)/(dx^(2)) at x=(pi)/(4)( a) 3( b) (1)/(6sqrt(2))(c)1(d)(1)/(6)

Find (dy)/(dx),quad when x=(3at)/(a+t^(2)) and y=(3at^(2))/(1+t^(2))

MODERN PUBLICATION-CONTINUITY AND DIFFERENTIABILITY-EXERCISE 5(k) (LONG ANSWER TYPE QUESTIONS (I))
  1. If y=Asinx+Bcosx, prove that (d^(2)y)/(dx^(2))+y=0.

    Text Solution

    |

  2. Find (d^(2)y)/(dx^(2)) in the following x=at^(2),y=2at

    Text Solution

    |

  3. Find (d^(2)y)/(dx^(2)) in the following x=(2at^(2))/(1+t),y=(3at)/(1...

    Text Solution

    |

  4. Find (d^(2)y)/(dx^(2)) in the following x=acostheta,y=bsintheta

    Text Solution

    |

  5. Find (d^(2)y)/(dx^(2)) in the following x=acos^(3)theta,y=asin^(3)th...

    Text Solution

    |

  6. Find (d^(2)y)/(dx^(2)) in the following x=acos^(3)theta,y=bsin^(3)th...

    Text Solution

    |

  7. Find (d^(2)y)/(dx^(2)) in the following If x^(2/3)+y^(2/3)=a^(2/3),"...

    Text Solution

    |

  8. Find (d^(2)y)/(dx^(2)) in the following If x=acos^(3)thetaandy=asin^...

    Text Solution

    |

  9. Find (d^(2)y)/(dx^(2)) in the following x=a(cost+tsint),y=a(sint-tco...

    Text Solution

    |

  10. Find (d^(2)y)/(dx^(2)) in the following x=a(theta+sintheta),y=a(1+co...

    Text Solution

    |

  11. Find (d^(2)y)/(dx^(2))" at "theta=pi/2 when : x=a(theta+sintheta),y=...

    Text Solution

    |

  12. Find (d^(2)y)/(dx^(2))" at "theta=pi/2 when : x=a(theta-sintheta),y=...

    Text Solution

    |

  13. Find (d^(2)y)/(dx^(2))" at "theta=pi/2 when : x=a(1-costheta),y=a(th...

    Text Solution

    |

  14. Find (d^(2)y)/(dx^(2))" at "theta=pi/2 when : x=a(theta-sintheta),y=...

    Text Solution

    |

  15. Find (d^(2)y)/(dx^(2))" at "theta=pi/4 when : x=a(costheta+logtanthe...

    Text Solution

    |

  16. If x=cost+logtant/2,\ \ y=sint , then find the value of (d^2y)/(dt^2) ...

    Text Solution

    |

  17. Find (d^(2)y)/(dx^(2)) when : x=2costheta-cos2thetaandy=2sintheta-si...

    Text Solution

    |

  18. If x=a(cos 2 theta+2 theta sin 2 theta) " and" y=a(sin 2 theta - 2 the...

    Text Solution

    |

  19. If x=asint\ and y=a(cost+logtant/2) , find (d^2\ y)/(dx^2)

    Text Solution

    |

  20. If x+y=tan^(-1)y" and "(d^(2)y)/(dx^(2))=f(y)(dy)/(dx), then f(y)=

    Text Solution

    |