Home
Class 12
MATHS
Find (d^(2)y)/(dx^(2)) in the following ...

Find `(d^(2)y)/(dx^(2))` in the following
`x=acos^(3)theta,y=asin^(3)theta`

Text Solution

AI Generated Solution

The correct Answer is:
To find the second derivative \(\frac{d^2y}{dx^2}\) for the given parametric equations \(x = a \cos^3 \theta\) and \(y = a \sin^3 \theta\), we will follow these steps: ### Step 1: Differentiate \(x\) with respect to \(\theta\) Given: \[ x = a \cos^3 \theta \] Differentiating both sides with respect to \(\theta\): \[ \frac{dx}{d\theta} = a \cdot 3 \cos^2 \theta \cdot (-\sin \theta) = -3a \cos^2 \theta \sin \theta \] ### Step 2: Differentiate \(y\) with respect to \(\theta\) Given: \[ y = a \sin^3 \theta \] Differentiating both sides with respect to \(\theta\): \[ \frac{dy}{d\theta} = a \cdot 3 \sin^2 \theta \cdot \cos \theta = 3a \sin^2 \theta \cos \theta \] ### Step 3: Find \(\frac{dy}{dx}\) Using the chain rule: \[ \frac{dy}{dx} = \frac{dy/d\theta}{dx/d\theta} \] Substituting the derivatives we found: \[ \frac{dy}{dx} = \frac{3a \sin^2 \theta \cos \theta}{-3a \cos^2 \theta \sin \theta} \] Simplifying: \[ \frac{dy}{dx} = \frac{3a \sin^2 \theta \cos \theta}{-3a \cos^2 \theta \sin \theta} = -\frac{\sin \theta}{\cos \theta} = -\tan \theta \] ### Step 4: Differentiate \(\frac{dy}{dx}\) with respect to \(\theta\) Now, we differentiate \(\frac{dy}{dx} = -\tan \theta\): \[ \frac{d}{d\theta} \left(-\tan \theta\right) = -\sec^2 \theta \] ### Step 5: Find \(\frac{d\theta}{dx}\) From the earlier step, we have: \[ \frac{dx}{d\theta} = -3a \cos^2 \theta \sin \theta \] Thus, \[ \frac{d\theta}{dx} = \frac{1}{-3a \cos^2 \theta \sin \theta} \] ### Step 6: Find \(\frac{d^2y}{dx^2}\) Using the chain rule: \[ \frac{d^2y}{dx^2} = \frac{d}{dx} \left(\frac{dy}{dx}\right) = \frac{d}{d\theta} \left(-\tan \theta\right) \cdot \frac{d\theta}{dx} \] Substituting the derivatives: \[ \frac{d^2y}{dx^2} = -\sec^2 \theta \cdot \frac{1}{-3a \cos^2 \theta \sin \theta} \] \[ = \frac{\sec^2 \theta}{3a \cos^2 \theta \sin \theta} \] Since \(\sec^2 \theta = \frac{1}{\cos^2 \theta}\): \[ \frac{d^2y}{dx^2} = \frac{1}{3a \cos^4 \theta \sin \theta} \] ### Final Answer: \[ \frac{d^2y}{dx^2} = \frac{1}{3a \cos^4 \theta \sin \theta} \] ---
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise EXERCISE 5(l) (SHORT ANSWER TYPE QUESTIONS)|15 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise EXERCISE 5(l) (LONG ANSWER TYPE QUESTIONS (I))|23 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise EXERCISE 5(k) (SHORT ANSWER TYPE QUESTIONS)|19 Videos
  • APPLICATIONS OF THE INTEGRALS

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos
  • DETERMINANTS

    MODERN PUBLICATION|Exercise Chapter test 4|12 Videos

Similar Questions

Explore conceptually related problems

Find (d^(2)y)/(dx^(2)) in the following If x=acos^(3)thetaandy=asin^(3)theta , then find the value of (d^(2)y)/(dx^(2))" at "theta=pi/6 .

Find (d^(2)y)/(dx^(2)) in the following x=acos^(3)theta,y=bsin^(3)theta

Find (d^(2)y)/(dx^(2)) in the following x=a(theta+sintheta),y=a(1+costheta)

Find (dy)/(dx) , when x=acos^(3)theta,y=a sin^(3)theta

Find (d^(2)y)/(dx^(2))" at "theta=pi/2 when : x=a(1-costheta),y=a(theta+sintheta)

Find (dy)/(dx) if x=3 cos theta- 2cos^(3)theta,y=3 sin theta -2sin^(3) theta.

Find (d^(2)y)/(dx^(2))" at "theta=pi/2 when : x=a(theta+sintheta),y=a(1-costheta)

Find (d^(2)y)/(dx^(2))" at "theta=pi/2 when : x=a(theta-sintheta),y=a(1+costheta)

Find (d^(2)y)/(dx^(2))" at "theta=pi/2 when : x=a(theta-sintheta),y=a(1-costheta)

MODERN PUBLICATION-CONTINUITY AND DIFFERENTIABILITY-EXERCISE 5(k) (LONG ANSWER TYPE QUESTIONS (I))
  1. Find (d^(2)y)/(dx^(2)) in the following x=(2at^(2))/(1+t),y=(3at)/(1...

    Text Solution

    |

  2. Find (d^(2)y)/(dx^(2)) in the following x=acostheta,y=bsintheta

    Text Solution

    |

  3. Find (d^(2)y)/(dx^(2)) in the following x=acos^(3)theta,y=asin^(3)th...

    Text Solution

    |

  4. Find (d^(2)y)/(dx^(2)) in the following x=acos^(3)theta,y=bsin^(3)th...

    Text Solution

    |

  5. Find (d^(2)y)/(dx^(2)) in the following If x^(2/3)+y^(2/3)=a^(2/3),"...

    Text Solution

    |

  6. Find (d^(2)y)/(dx^(2)) in the following If x=acos^(3)thetaandy=asin^...

    Text Solution

    |

  7. Find (d^(2)y)/(dx^(2)) in the following x=a(cost+tsint),y=a(sint-tco...

    Text Solution

    |

  8. Find (d^(2)y)/(dx^(2)) in the following x=a(theta+sintheta),y=a(1+co...

    Text Solution

    |

  9. Find (d^(2)y)/(dx^(2))" at "theta=pi/2 when : x=a(theta+sintheta),y=...

    Text Solution

    |

  10. Find (d^(2)y)/(dx^(2))" at "theta=pi/2 when : x=a(theta-sintheta),y=...

    Text Solution

    |

  11. Find (d^(2)y)/(dx^(2))" at "theta=pi/2 when : x=a(1-costheta),y=a(th...

    Text Solution

    |

  12. Find (d^(2)y)/(dx^(2))" at "theta=pi/2 when : x=a(theta-sintheta),y=...

    Text Solution

    |

  13. Find (d^(2)y)/(dx^(2))" at "theta=pi/4 when : x=a(costheta+logtanthe...

    Text Solution

    |

  14. If x=cost+logtant/2,\ \ y=sint , then find the value of (d^2y)/(dt^2) ...

    Text Solution

    |

  15. Find (d^(2)y)/(dx^(2)) when : x=2costheta-cos2thetaandy=2sintheta-si...

    Text Solution

    |

  16. If x=a(cos 2 theta+2 theta sin 2 theta) " and" y=a(sin 2 theta - 2 the...

    Text Solution

    |

  17. If x=asint\ and y=a(cost+logtant/2) , find (d^2\ y)/(dx^2)

    Text Solution

    |

  18. If x+y=tan^(-1)y" and "(d^(2)y)/(dx^(2))=f(y)(dy)/(dx), then f(y)=

    Text Solution

    |

  19. If y=(sin^(-1)x)^2 then prove that (1-x^(2))(d^2y)/(dx^2)-x(dy)/(dx)-2...

    Text Solution

    |

  20. If y=(cos^(-1)x)^(2), then prove that : (1-x^(2))y(2)-xy(1)-2=0.

    Text Solution

    |