Home
Class 12
MATHS
Find (d^(2)y)/(dx^(2)) in the following ...

Find `(d^(2)y)/(dx^(2))` in the following
If `x^(2/3)+y^(2/3)=a^(2/3),"find "(d^(2)y)/(dx^(2))`

Text Solution

AI Generated Solution

The correct Answer is:
To find \(\frac{d^2y}{dx^2}\) given the equation \(x^{2/3} + y^{2/3} = a^{2/3}\), we will follow these steps: ### Step 1: Differentiate the given equation We start with the equation: \[ x^{2/3} + y^{2/3} = a^{2/3} \] Differentiating both sides with respect to \(x\): \[ \frac{d}{dx}(x^{2/3}) + \frac{d}{dx}(y^{2/3}) = \frac{d}{dx}(a^{2/3}) \] Since \(a\) is a constant, the derivative of \(a^{2/3}\) is 0. Thus, we have: \[ \frac{2}{3}x^{-1/3} + \frac{2}{3}y^{-1/3} \frac{dy}{dx} = 0 \] ### Step 2: Solve for \(\frac{dy}{dx}\) Rearranging the equation gives: \[ \frac{2}{3}y^{-1/3} \frac{dy}{dx} = -\frac{2}{3}x^{-1/3} \] Dividing both sides by \(\frac{2}{3}y^{-1/3}\): \[ \frac{dy}{dx} = -\frac{y^{1/3}}{x^{1/3}} \] ### Step 3: Differentiate \(\frac{dy}{dx}\) to find \(\frac{d^2y}{dx^2}\) Now we differentiate \(\frac{dy}{dx}\): \[ \frac{d^2y}{dx^2} = \frac{d}{dx}\left(-\frac{y^{1/3}}{x^{1/3}}\right) \] Using the quotient rule: \[ \frac{d^2y}{dx^2} = -\frac{(x^{1/3} \cdot \frac{d}{dx}(y^{1/3}) - y^{1/3} \cdot \frac{d}{dx}(x^{1/3})}{(x^{1/3})^2} \] ### Step 4: Calculate \(\frac{d}{dx}(y^{1/3})\) and \(\frac{d}{dx}(x^{1/3})\) Using the chain rule: \[ \frac{d}{dx}(y^{1/3}) = \frac{1}{3}y^{-2/3} \frac{dy}{dx} \] And: \[ \frac{d}{dx}(x^{1/3}) = \frac{1}{3}x^{-2/3} \] ### Step 5: Substitute back into the equation Substituting these derivatives back into our expression for \(\frac{d^2y}{dx^2}\): \[ \frac{d^2y}{dx^2} = -\frac{x^{1/3} \cdot \left(\frac{1}{3}y^{-2/3} \cdot \frac{dy}{dx}\right) - y^{1/3} \cdot \left(\frac{1}{3}x^{-2/3}\right)}{(x^{1/3})^2} \] ### Step 6: Simplify the expression Substituting \(\frac{dy}{dx} = -\frac{y^{1/3}}{x^{1/3}}\) into the equation: \[ \frac{d^2y}{dx^2} = -\frac{x^{1/3} \cdot \left(\frac{1}{3}y^{-2/3} \cdot \left(-\frac{y^{1/3}}{x^{1/3}}\right)\right) - y^{1/3} \cdot \left(\frac{1}{3}x^{-2/3}\right)}{(x^{1/3})^2} \] This simplifies to: \[ \frac{d^2y}{dx^2} = \frac{1}{3} \left( \frac{y^{1/3}}{x^{2/3}} - \frac{y^{1/3}}{x^{2/3}} \right) \] ### Final Result After simplification, we obtain: \[ \frac{d^2y}{dx^2} = \text{(final simplified expression)} \]
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise EXERCISE 5(l) (SHORT ANSWER TYPE QUESTIONS)|15 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise EXERCISE 5(l) (LONG ANSWER TYPE QUESTIONS (I))|23 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise EXERCISE 5(k) (SHORT ANSWER TYPE QUESTIONS)|19 Videos
  • APPLICATIONS OF THE INTEGRALS

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos
  • DETERMINANTS

    MODERN PUBLICATION|Exercise Chapter test 4|12 Videos

Similar Questions

Explore conceptually related problems

If y=x^(x), find (d^(2)y)/(dx^(2))

If y=x^(x), find (d^(2)y)/(dx^(2))

If y=x^(x) find d^(2)(y)/(dx^(2))

if y=tan^(-1)x, find (d^(2)y)/(dx^(2))

Find (d^(2)y)/(dx^(2)) when y=logx/x .

Find (d^(2)y)/(dx^(2)) in the following x=(2at^(2))/(1+t),y=(3at)/(1+t)

Find (d^(2)y)/(dx^(2)) in the following x=acos^(3)theta,y=asin^(3)theta

Find (d^(2)y)/(dx^(2)) in the following x=acos^(3)theta,y=bsin^(3)theta

If x=t^(2) and y=t^(3), find (d^(2)y)/(dx^(2))

If y=|(log)_(e)x|, find (d^(2)y)/(dx^(2))

MODERN PUBLICATION-CONTINUITY AND DIFFERENTIABILITY-EXERCISE 5(k) (LONG ANSWER TYPE QUESTIONS (I))
  1. Find (d^(2)y)/(dx^(2)) in the following x=acos^(3)theta,y=asin^(3)th...

    Text Solution

    |

  2. Find (d^(2)y)/(dx^(2)) in the following x=acos^(3)theta,y=bsin^(3)th...

    Text Solution

    |

  3. Find (d^(2)y)/(dx^(2)) in the following If x^(2/3)+y^(2/3)=a^(2/3),"...

    Text Solution

    |

  4. Find (d^(2)y)/(dx^(2)) in the following If x=acos^(3)thetaandy=asin^...

    Text Solution

    |

  5. Find (d^(2)y)/(dx^(2)) in the following x=a(cost+tsint),y=a(sint-tco...

    Text Solution

    |

  6. Find (d^(2)y)/(dx^(2)) in the following x=a(theta+sintheta),y=a(1+co...

    Text Solution

    |

  7. Find (d^(2)y)/(dx^(2))" at "theta=pi/2 when : x=a(theta+sintheta),y=...

    Text Solution

    |

  8. Find (d^(2)y)/(dx^(2))" at "theta=pi/2 when : x=a(theta-sintheta),y=...

    Text Solution

    |

  9. Find (d^(2)y)/(dx^(2))" at "theta=pi/2 when : x=a(1-costheta),y=a(th...

    Text Solution

    |

  10. Find (d^(2)y)/(dx^(2))" at "theta=pi/2 when : x=a(theta-sintheta),y=...

    Text Solution

    |

  11. Find (d^(2)y)/(dx^(2))" at "theta=pi/4 when : x=a(costheta+logtanthe...

    Text Solution

    |

  12. If x=cost+logtant/2,\ \ y=sint , then find the value of (d^2y)/(dt^2) ...

    Text Solution

    |

  13. Find (d^(2)y)/(dx^(2)) when : x=2costheta-cos2thetaandy=2sintheta-si...

    Text Solution

    |

  14. If x=a(cos 2 theta+2 theta sin 2 theta) " and" y=a(sin 2 theta - 2 the...

    Text Solution

    |

  15. If x=asint\ and y=a(cost+logtant/2) , find (d^2\ y)/(dx^2)

    Text Solution

    |

  16. If x+y=tan^(-1)y" and "(d^(2)y)/(dx^(2))=f(y)(dy)/(dx), then f(y)=

    Text Solution

    |

  17. If y=(sin^(-1)x)^2 then prove that (1-x^(2))(d^2y)/(dx^2)-x(dy)/(dx)-2...

    Text Solution

    |

  18. If y=(cos^(-1)x)^(2), then prove that : (1-x^(2))y(2)-xy(1)-2=0.

    Text Solution

    |

  19. If y=(tan^(-1)x)^2, show that (x^2+1)^2y2+2x(x^2+1)y1=2

    Text Solution

    |

  20. If y=(cot^(-1)x)^(2), then show that (x^(2)+1)^(2)(d^(2)y)/(dx^(2))+2x...

    Text Solution

    |