Home
Class 12
MATHS
Find (d^(2)y)/(dx^(2)) in the following ...

Find `(d^(2)y)/(dx^(2))` in the following
If `x=acos^(3)thetaandy=asin^(3)theta`, then find the value of `(d^(2)y)/(dx^(2))" at "theta=pi/6`.

Text Solution

AI Generated Solution

The correct Answer is:
To find the second derivative \(\frac{d^2y}{dx^2}\) given the parametric equations \(x = a \cos^3 \theta\) and \(y = a \sin^3 \theta\), we will follow these steps: ### Step 1: Find \(\frac{dx}{d\theta}\) and \(\frac{dy}{d\theta}\) 1. Differentiate \(x = a \cos^3 \theta\) with respect to \(\theta\): \[ \frac{dx}{d\theta} = a \cdot 3 \cos^2 \theta \cdot (-\sin \theta) = -3a \cos^2 \theta \sin \theta \] 2. Differentiate \(y = a \sin^3 \theta\) with respect to \(\theta\): \[ \frac{dy}{d\theta} = a \cdot 3 \sin^2 \theta \cdot \cos \theta = 3a \sin^2 \theta \cos \theta \] ### Step 2: Find \(\frac{dy}{dx}\) Using the chain rule: \[ \frac{dy}{dx} = \frac{dy/d\theta}{dx/d\theta} = \frac{3a \sin^2 \theta \cos \theta}{-3a \cos^2 \theta \sin \theta} \] This simplifies to: \[ \frac{dy}{dx} = -\frac{\sin \theta}{\cos \theta} = -\tan \theta \] ### Step 3: Find \(\frac{d^2y}{dx^2}\) To find the second derivative, we differentiate \(\frac{dy}{dx}\) with respect to \(x\): \[ \frac{d^2y}{dx^2} = \frac{d}{dx}\left(-\tan \theta\right) \] Using the chain rule again: \[ \frac{d^2y}{dx^2} = \frac{d}{d\theta}(-\tan \theta) \cdot \frac{d\theta}{dx} \] Now, differentiate \(-\tan \theta\): \[ \frac{d}{d\theta}(-\tan \theta) = -\sec^2 \theta \] Next, we need \(\frac{d\theta}{dx}\): \[ \frac{d\theta}{dx} = \frac{1}{\frac{dx}{d\theta}} = \frac{1}{-3a \cos^2 \theta \sin \theta} \] Thus, \[ \frac{d^2y}{dx^2} = -\sec^2 \theta \cdot \left(\frac{1}{-3a \cos^2 \theta \sin \theta}\right) = \frac{\sec^2 \theta}{3a \cos^2 \theta \sin \theta} \] ### Step 4: Evaluate at \(\theta = \frac{\pi}{6}\) 1. Calculate \(\sec^2\left(\frac{\pi}{6}\right)\): \[ \sec\left(\frac{\pi}{6}\right) = \frac{1}{\cos\left(\frac{\pi}{6}\right)} = \frac{1}{\frac{\sqrt{3}}{2}} = \frac{2}{\sqrt{3}} \quad \Rightarrow \quad \sec^2\left(\frac{\pi}{6}\right) = \frac{4}{3} \] 2. Calculate \(\cos^2\left(\frac{\pi}{6}\right)\) and \(\sin\left(\frac{\pi}{6}\right)\): \[ \cos\left(\frac{\pi}{6}\right) = \frac{\sqrt{3}}{2} \quad \Rightarrow \quad \cos^2\left(\frac{\pi}{6}\right) = \left(\frac{\sqrt{3}}{2}\right)^2 = \frac{3}{4} \] \[ \sin\left(\frac{\pi}{6}\right) = \frac{1}{2} \] 3. Substitute these values into \(\frac{d^2y}{dx^2}\): \[ \frac{d^2y}{dx^2} = \frac{\frac{4}{3}}{3a \cdot \frac{3}{4} \cdot \frac{1}{2}} = \frac{\frac{4}{3}}{\frac{9a}{4}} = \frac{4 \cdot 4}{3 \cdot 9a} = \frac{16}{27a} \] ### Final Answer Thus, the value of \(\frac{d^2y}{dx^2}\) at \(\theta = \frac{\pi}{6}\) is: \[ \frac{d^2y}{dx^2} = \frac{16}{27a} \]
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise EXERCISE 5(l) (SHORT ANSWER TYPE QUESTIONS)|15 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise EXERCISE 5(l) (LONG ANSWER TYPE QUESTIONS (I))|23 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise EXERCISE 5(k) (SHORT ANSWER TYPE QUESTIONS)|19 Videos
  • APPLICATIONS OF THE INTEGRALS

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos
  • DETERMINANTS

    MODERN PUBLICATION|Exercise Chapter test 4|12 Videos

Similar Questions

Explore conceptually related problems

If x=a cos^(3)theta and y=a sin^(3)theta, then find the value of (d^(2)y)/(dx^(2)) at theta=(pi)/(6)

Find (d^(2)y)/(dx^(2)) in the following x=acos^(3)theta,y=asin^(3)theta

Find (d^(2)y)/(dx^(2)) in the following x=acos^(3)theta,y=bsin^(3)theta

If x=bcos^(3)theta,y=asin^(3)theta," then "(dy)/(dx)=

x=acos^(3)theta,y=asin^(3)theta then find (d^(2)y)/(dx^(2))

If x=a(cos theta+log(tan((theta)/(2))) and y=a sin theta then find the value of (d^(2)y)/(dx^(2)) at theta=(pi)/(4)

If x=a(1-cos^(3)theta),y=as in^(3)theta, prove that (d^(2)y)/(dx^(2))=(32)/(27a) at theta=(pi)/(6)

If x sec theta , y = tan theta , then the value of (d^(2) y)/(dx^(2)) " at " theta = (pi)/(4) is

Find (d^(2)y)/(dx^(2)) in the following x=a(theta+sintheta),y=a(1+costheta)

MODERN PUBLICATION-CONTINUITY AND DIFFERENTIABILITY-EXERCISE 5(k) (LONG ANSWER TYPE QUESTIONS (I))
  1. Find (d^(2)y)/(dx^(2)) in the following x=acos^(3)theta,y=bsin^(3)th...

    Text Solution

    |

  2. Find (d^(2)y)/(dx^(2)) in the following If x^(2/3)+y^(2/3)=a^(2/3),"...

    Text Solution

    |

  3. Find (d^(2)y)/(dx^(2)) in the following If x=acos^(3)thetaandy=asin^...

    Text Solution

    |

  4. Find (d^(2)y)/(dx^(2)) in the following x=a(cost+tsint),y=a(sint-tco...

    Text Solution

    |

  5. Find (d^(2)y)/(dx^(2)) in the following x=a(theta+sintheta),y=a(1+co...

    Text Solution

    |

  6. Find (d^(2)y)/(dx^(2))" at "theta=pi/2 when : x=a(theta+sintheta),y=...

    Text Solution

    |

  7. Find (d^(2)y)/(dx^(2))" at "theta=pi/2 when : x=a(theta-sintheta),y=...

    Text Solution

    |

  8. Find (d^(2)y)/(dx^(2))" at "theta=pi/2 when : x=a(1-costheta),y=a(th...

    Text Solution

    |

  9. Find (d^(2)y)/(dx^(2))" at "theta=pi/2 when : x=a(theta-sintheta),y=...

    Text Solution

    |

  10. Find (d^(2)y)/(dx^(2))" at "theta=pi/4 when : x=a(costheta+logtanthe...

    Text Solution

    |

  11. If x=cost+logtant/2,\ \ y=sint , then find the value of (d^2y)/(dt^2) ...

    Text Solution

    |

  12. Find (d^(2)y)/(dx^(2)) when : x=2costheta-cos2thetaandy=2sintheta-si...

    Text Solution

    |

  13. If x=a(cos 2 theta+2 theta sin 2 theta) " and" y=a(sin 2 theta - 2 the...

    Text Solution

    |

  14. If x=asint\ and y=a(cost+logtant/2) , find (d^2\ y)/(dx^2)

    Text Solution

    |

  15. If x+y=tan^(-1)y" and "(d^(2)y)/(dx^(2))=f(y)(dy)/(dx), then f(y)=

    Text Solution

    |

  16. If y=(sin^(-1)x)^2 then prove that (1-x^(2))(d^2y)/(dx^2)-x(dy)/(dx)-2...

    Text Solution

    |

  17. If y=(cos^(-1)x)^(2), then prove that : (1-x^(2))y(2)-xy(1)-2=0.

    Text Solution

    |

  18. If y=(tan^(-1)x)^2, show that (x^2+1)^2y2+2x(x^2+1)y1=2

    Text Solution

    |

  19. If y=(cot^(-1)x)^(2), then show that (x^(2)+1)^(2)(d^(2)y)/(dx^(2))+2x...

    Text Solution

    |

  20. If y=(s in^(-1)\ x)/(sqrt(1-x^2)) , show that (1-x^2) (d^2\ y)/(dx^2)...

    Text Solution

    |