Home
Class 12
MATHS
Find (d^(2)y)/(dx^(2))" at "theta=pi/2 w...

Find `(d^(2)y)/(dx^(2))" at "theta=pi/2` when :
`x=a(theta+sintheta),y=a(1-costheta)`

Text Solution

AI Generated Solution

The correct Answer is:
To find \(\frac{d^2y}{dx^2}\) at \(\theta = \frac{\pi}{2}\) where \(x = a(\theta + \sin \theta)\) and \(y = a(1 - \cos \theta)\), we will follow these steps: ### Step 1: Differentiate \(x\) and \(y\) with respect to \(\theta\) Given: \[ x = a(\theta + \sin \theta) \] \[ y = a(1 - \cos \theta) \] Now, we differentiate \(x\) and \(y\) with respect to \(\theta\): \[ \frac{dx}{d\theta} = a\left(1 + \cos \theta\right) \] \[ \frac{dy}{d\theta} = a\sin \theta \] ### Step 2: Find \(\frac{dy}{dx}\) Using the chain rule, we find \(\frac{dy}{dx}\): \[ \frac{dy}{dx} = \frac{dy/d\theta}{dx/d\theta} = \frac{a\sin \theta}{a(1 + \cos \theta)} = \frac{\sin \theta}{1 + \cos \theta} \] ### Step 3: Differentiate \(\frac{dy}{dx}\) with respect to \(\theta\) Now we differentiate \(\frac{dy}{dx}\) with respect to \(\theta\): Using the quotient rule: \[ \frac{d}{d\theta}\left(\frac{\sin \theta}{1 + \cos \theta}\right) = \frac{(1 + \cos \theta)(\cos \theta) - \sin \theta(-\sin \theta)}{(1 + \cos \theta)^2} \] Simplifying this gives: \[ = \frac{(1 + \cos \theta)\cos \theta + \sin^2 \theta}{(1 + \cos \theta)^2} \] \[ = \frac{\cos \theta + \cos^2 \theta + \sin^2 \theta}{(1 + \cos \theta)^2} \] Using the identity \(\sin^2 \theta + \cos^2 \theta = 1\): \[ = \frac{\cos \theta + 1}{(1 + \cos \theta)^2} = \frac{1 + \cos \theta}{(1 + \cos \theta)^2} = \frac{1}{1 + \cos \theta} \] ### Step 4: Find \(\frac{d^2y}{dx^2}\) Now we can find \(\frac{d^2y}{dx^2}\): \[ \frac{d^2y}{dx^2} = \frac{d}{dx}\left(\frac{dy}{dx}\right) = \frac{d}{d\theta}\left(\frac{dy}{dx}\right) \cdot \frac{d\theta}{dx} \] We already have \(\frac{d}{d\theta}\left(\frac{dy}{dx}\right) = \frac{1}{1 + \cos \theta}\). Now we need \(\frac{d\theta}{dx}\): \[ \frac{d\theta}{dx} = \frac{1}{\frac{dx}{d\theta}} = \frac{1}{a(1 + \cos \theta)} \] Combining these: \[ \frac{d^2y}{dx^2} = \frac{1}{1 + \cos \theta} \cdot \frac{1}{a(1 + \cos \theta)} = \frac{1}{a(1 + \cos \theta)^2} \] ### Step 5: Evaluate at \(\theta = \frac{\pi}{2}\) Now we substitute \(\theta = \frac{\pi}{2}\): \[ \cos\left(\frac{\pi}{2}\right) = 0 \implies 1 + \cos\left(\frac{\pi}{2}\right) = 1 \] Thus, \[ \frac{d^2y}{dx^2} = \frac{1}{a(1)^2} = \frac{1}{a} \] ### Final Answer \[ \frac{d^2y}{dx^2} \text{ at } \theta = \frac{\pi}{2} = \frac{1}{a} \]
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise EXERCISE 5(l) (SHORT ANSWER TYPE QUESTIONS)|15 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise EXERCISE 5(l) (LONG ANSWER TYPE QUESTIONS (I))|23 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise EXERCISE 5(k) (SHORT ANSWER TYPE QUESTIONS)|19 Videos
  • APPLICATIONS OF THE INTEGRALS

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos
  • DETERMINANTS

    MODERN PUBLICATION|Exercise Chapter test 4|12 Videos

Similar Questions

Explore conceptually related problems

Find (d^(2)y)/(dx^(2))" at "theta=pi/4 when : x=a(costheta+logtantheta//2),y=asintheta

Find (d^(2)y)/(dx^(2))" at "theta=pi/2 when : x=a(1-costheta),y=a(theta+sintheta)

Find (d^(2)y)/(dx^(2)) in the following x=a(theta+sintheta),y=a(1+costheta)

Find (dy)/(dx) , if x=a(theta+sintheta), y=1(1-costheta) .

Find (dy)/(dx) if x=a(theta-sintheta) and y=a(1-costheta) .

Find the value of dy/dx" at "theta=pi/4 , if : x=ae^(theta)(sintheta-costheta)andy=ae^(theta)(sintheta+costheta) .

Find (d^(2)y)/(dx^(2)) when : x=2costheta-cos2thetaandy=2sintheta-sin2theta

If x=a(theta+sintheta) and y=a(1-costheta) , find dy//dx .

If y=a(theta+sintheta),x=a(1-costheta)," then "(dy)/(dx)=

MODERN PUBLICATION-CONTINUITY AND DIFFERENTIABILITY-EXERCISE 5(k) (LONG ANSWER TYPE QUESTIONS (I))
  1. Find (d^(2)y)/(dx^(2)) in the following x=a(cost+tsint),y=a(sint-tco...

    Text Solution

    |

  2. Find (d^(2)y)/(dx^(2)) in the following x=a(theta+sintheta),y=a(1+co...

    Text Solution

    |

  3. Find (d^(2)y)/(dx^(2))" at "theta=pi/2 when : x=a(theta+sintheta),y=...

    Text Solution

    |

  4. Find (d^(2)y)/(dx^(2))" at "theta=pi/2 when : x=a(theta-sintheta),y=...

    Text Solution

    |

  5. Find (d^(2)y)/(dx^(2))" at "theta=pi/2 when : x=a(1-costheta),y=a(th...

    Text Solution

    |

  6. Find (d^(2)y)/(dx^(2))" at "theta=pi/2 when : x=a(theta-sintheta),y=...

    Text Solution

    |

  7. Find (d^(2)y)/(dx^(2))" at "theta=pi/4 when : x=a(costheta+logtanthe...

    Text Solution

    |

  8. If x=cost+logtant/2,\ \ y=sint , then find the value of (d^2y)/(dt^2) ...

    Text Solution

    |

  9. Find (d^(2)y)/(dx^(2)) when : x=2costheta-cos2thetaandy=2sintheta-si...

    Text Solution

    |

  10. If x=a(cos 2 theta+2 theta sin 2 theta) " and" y=a(sin 2 theta - 2 the...

    Text Solution

    |

  11. If x=asint\ and y=a(cost+logtant/2) , find (d^2\ y)/(dx^2)

    Text Solution

    |

  12. If x+y=tan^(-1)y" and "(d^(2)y)/(dx^(2))=f(y)(dy)/(dx), then f(y)=

    Text Solution

    |

  13. If y=(sin^(-1)x)^2 then prove that (1-x^(2))(d^2y)/(dx^2)-x(dy)/(dx)-2...

    Text Solution

    |

  14. If y=(cos^(-1)x)^(2), then prove that : (1-x^(2))y(2)-xy(1)-2=0.

    Text Solution

    |

  15. If y=(tan^(-1)x)^2, show that (x^2+1)^2y2+2x(x^2+1)y1=2

    Text Solution

    |

  16. If y=(cot^(-1)x)^(2), then show that (x^(2)+1)^(2)(d^(2)y)/(dx^(2))+2x...

    Text Solution

    |

  17. If y=(s in^(-1)\ x)/(sqrt(1-x^2)) , show that (1-x^2) (d^2\ y)/(dx^2)...

    Text Solution

    |

  18. If y=log\ [x+sqrt(x^2+1)] , prove that (x^2+1)(d^2\ y)/(dx^2)+x(dy)/(d...

    Text Solution

    |

  19. If y=log{x+sqrt(x^2+a^2)} , prove that: (x^2+a^2)(d^2y)/(dx^2)+x(dy)/(...

    Text Solution

    |

  20. If y={x +sqrt(x^(2)+1)}^(m), then show that (x^(2)+1)(d^(2)y)/(dx^(2))...

    Text Solution

    |