Home
Class 12
MATHS
Find (d^(2)y)/(dx^(2))" at "theta=pi/2 w...

Find `(d^(2)y)/(dx^(2))" at "theta=pi/2` when :
`x=a(1-costheta),y=a(theta+sintheta)`

Text Solution

AI Generated Solution

The correct Answer is:
To find \(\frac{d^2y}{dx^2}\) at \(\theta = \frac{\pi}{2}\) given the parametric equations \(x = a(1 - \cos \theta)\) and \(y = a(\theta + \sin \theta)\), we can follow these steps: ### Step 1: Find \(\frac{dx}{d\theta}\) and \(\frac{dy}{d\theta}\) 1. **Differentiate \(x\) with respect to \(\theta\)**: \[ x = a(1 - \cos \theta) \implies \frac{dx}{d\theta} = a \sin \theta \] 2. **Differentiate \(y\) with respect to \(\theta\)**: \[ y = a(\theta + \sin \theta) \implies \frac{dy}{d\theta} = a(1 + \cos \theta) \] ### Step 2: Find \(\frac{dy}{dx}\) Using the chain rule: \[ \frac{dy}{dx} = \frac{dy/d\theta}{dx/d\theta} = \frac{a(1 + \cos \theta)}{a \sin \theta} = \frac{1 + \cos \theta}{\sin \theta} \] ### Step 3: Find \(\frac{d^2y}{dx^2}\) To find \(\frac{d^2y}{dx^2}\), we need to differentiate \(\frac{dy}{dx}\) with respect to \(\theta\) and then divide by \(\frac{dx}{d\theta}\): 1. **Differentiate \(\frac{dy}{dx}\)**: \[ \frac{dy}{dx} = \frac{1 + \cos \theta}{\sin \theta} \] Using the quotient rule: \[ \frac{d}{d\theta}\left(\frac{1 + \cos \theta}{\sin \theta}\right) = \frac{\sin \theta(-\sin \theta) - (1 + \cos \theta)\cos \theta}{\sin^2 \theta} \] Simplifying: \[ = \frac{-\sin^2 \theta - (1 + \cos \theta)\cos \theta}{\sin^2 \theta} \] 2. **Now, find \(\frac{d^2y}{dx^2}\)**: \[ \frac{d^2y}{dx^2} = \frac{d}{d\theta}\left(\frac{dy}{dx}\right) \cdot \frac{1}{\frac{dx}{d\theta}} = \frac{-\sin^2 \theta - (1 + \cos \theta)\cos \theta}{\sin^2 \theta} \cdot \frac{1}{a \sin \theta} \] ### Step 4: Evaluate at \(\theta = \frac{\pi}{2}\) 1. **Calculate \(\frac{dx}{d\theta}\) and \(\frac{dy}{d\theta}\)**: \[ \frac{dx}{d\theta} = a \sin\left(\frac{\pi}{2}\right) = a \] \[ \frac{dy}{d\theta} = a\left(1 + \cos\left(\frac{\pi}{2}\right)\right) = a(1 + 0) = a \] 2. **Substituting \(\theta = \frac{\pi}{2}\)** into \(\frac{d^2y}{dx^2}\): \[ \frac{d^2y}{dx^2} = \frac{-\sin^2\left(\frac{\pi}{2}\right) - (1 + \cos\left(\frac{\pi}{2}\right))\cos\left(\frac{\pi}{2}\right)}{a \sin^2\left(\frac{\pi}{2}\right)} = \frac{-1 - (1 + 0) \cdot 0}{a \cdot 1} = \frac{-1}{a} \] ### Final Result: \[ \frac{d^2y}{dx^2} \bigg|_{\theta = \frac{\pi}{2}} = -\frac{1}{a} \]
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise EXERCISE 5(l) (SHORT ANSWER TYPE QUESTIONS)|15 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise EXERCISE 5(l) (LONG ANSWER TYPE QUESTIONS (I))|23 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise EXERCISE 5(k) (SHORT ANSWER TYPE QUESTIONS)|19 Videos
  • APPLICATIONS OF THE INTEGRALS

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos
  • DETERMINANTS

    MODERN PUBLICATION|Exercise Chapter test 4|12 Videos

Similar Questions

Explore conceptually related problems

Find (d^(2)y)/(dx^(2))" at "theta=pi/2 when : x=a(theta-sintheta),y=a(1+costheta)

Find (d^(2)y)/(dx^(2))" at "theta=pi/2 when : x=a(theta-sintheta),y=a(1-costheta)

Find (d^(2)y)/(dx^(2))" at "theta=pi/2 when : x=a(theta+sintheta),y=a(1-costheta)

Find (d^(2)y)/(dx^(2))" at "theta=pi/4 when : x=a(costheta+logtantheta//2),y=asintheta

Find (dy)/(dx) when : x=a(1+costheta),y=a(theta+sintheta) .

Find dy/dx when x = a(1 + costheta) , y= a(theta-sintheta)

Find (d^(2)y)/(dx^(2)) in the following x=a(theta+sintheta),y=a(1+costheta)

Find (d^(2)y)/(dx^(2)) when : x=2costheta-cos2thetaandy=2sintheta-sin2theta

Find the value of dy/dx" at "theta=pi/4 , if : x=ae^(theta)(sintheta-costheta)andy=ae^(theta)(sintheta+costheta) .

Evaluate: int(1+costheta)/(theta+sintheta)d theta

MODERN PUBLICATION-CONTINUITY AND DIFFERENTIABILITY-EXERCISE 5(k) (LONG ANSWER TYPE QUESTIONS (I))
  1. Find (d^(2)y)/(dx^(2))" at "theta=pi/2 when : x=a(theta+sintheta),y=...

    Text Solution

    |

  2. Find (d^(2)y)/(dx^(2))" at "theta=pi/2 when : x=a(theta-sintheta),y=...

    Text Solution

    |

  3. Find (d^(2)y)/(dx^(2))" at "theta=pi/2 when : x=a(1-costheta),y=a(th...

    Text Solution

    |

  4. Find (d^(2)y)/(dx^(2))" at "theta=pi/2 when : x=a(theta-sintheta),y=...

    Text Solution

    |

  5. Find (d^(2)y)/(dx^(2))" at "theta=pi/4 when : x=a(costheta+logtanthe...

    Text Solution

    |

  6. If x=cost+logtant/2,\ \ y=sint , then find the value of (d^2y)/(dt^2) ...

    Text Solution

    |

  7. Find (d^(2)y)/(dx^(2)) when : x=2costheta-cos2thetaandy=2sintheta-si...

    Text Solution

    |

  8. If x=a(cos 2 theta+2 theta sin 2 theta) " and" y=a(sin 2 theta - 2 the...

    Text Solution

    |

  9. If x=asint\ and y=a(cost+logtant/2) , find (d^2\ y)/(dx^2)

    Text Solution

    |

  10. If x+y=tan^(-1)y" and "(d^(2)y)/(dx^(2))=f(y)(dy)/(dx), then f(y)=

    Text Solution

    |

  11. If y=(sin^(-1)x)^2 then prove that (1-x^(2))(d^2y)/(dx^2)-x(dy)/(dx)-2...

    Text Solution

    |

  12. If y=(cos^(-1)x)^(2), then prove that : (1-x^(2))y(2)-xy(1)-2=0.

    Text Solution

    |

  13. If y=(tan^(-1)x)^2, show that (x^2+1)^2y2+2x(x^2+1)y1=2

    Text Solution

    |

  14. If y=(cot^(-1)x)^(2), then show that (x^(2)+1)^(2)(d^(2)y)/(dx^(2))+2x...

    Text Solution

    |

  15. If y=(s in^(-1)\ x)/(sqrt(1-x^2)) , show that (1-x^2) (d^2\ y)/(dx^2)...

    Text Solution

    |

  16. If y=log\ [x+sqrt(x^2+1)] , prove that (x^2+1)(d^2\ y)/(dx^2)+x(dy)/(d...

    Text Solution

    |

  17. If y=log{x+sqrt(x^2+a^2)} , prove that: (x^2+a^2)(d^2y)/(dx^2)+x(dy)/(...

    Text Solution

    |

  18. If y={x +sqrt(x^(2)+1)}^(m), then show that (x^(2)+1)(d^(2)y)/(dx^(2))...

    Text Solution

    |

  19. If y=cos(mcos^(-1)x), then prove that : (1-x^(2))(d^(2)y)/(dx^(2))-x...

    Text Solution

    |

  20. If y=sin(mtan^(-1)x), prove that : (1+x^(2))^(2)y(2)+2x(1+x^(2))y(1)...

    Text Solution

    |