Home
Class 12
MATHS
Find (d^(2)y)/(dx^(2))" at "theta=pi/4 w...

Find `(d^(2)y)/(dx^(2))" at "theta=pi/4` when :
`x=a(costheta+logtantheta//2),y=asintheta`

Text Solution

AI Generated Solution

The correct Answer is:
To find \(\frac{d^2y}{dx^2}\) at \(\theta = \frac{\pi}{4}\) given the parametric equations \(x = a \left( \cos \theta + \log \tan \frac{\theta}{2} \right)\) and \(y = a \sin \theta\), we will follow these steps: ### Step 1: Find \(\frac{dy}{d\theta}\) and \(\frac{dx}{d\theta}\) 1. Differentiate \(y\) with respect to \(\theta\): \[ \frac{dy}{d\theta} = \frac{d}{d\theta}(a \sin \theta) = a \cos \theta \] 2. Differentiate \(x\) with respect to \(\theta\): \[ \frac{dx}{d\theta} = \frac{d}{d\theta}\left(a \cos \theta + \log \tan \frac{\theta}{2}\right) \] Using the chain rule: \[ \frac{dx}{d\theta} = -a \sin \theta + \frac{1}{\tan \frac{\theta}{2}} \cdot \frac{1}{2} \sec^2 \frac{\theta}{2} \cdot \frac{1}{2} \] Simplifying this gives: \[ \frac{dx}{d\theta} = -a \sin \theta + \frac{1}{\sin \frac{\theta}{2}} \cdot \frac{1}{\cos^2 \frac{\theta}{2}} \] ### Step 2: Find \(\frac{dy}{dx}\) Using the chain rule: \[ \frac{dy}{dx} = \frac{dy/d\theta}{dx/d\theta} = \frac{a \cos \theta}{\frac{dx}{d\theta}} \] ### Step 3: Find \(\frac{d^2y}{dx^2}\) To find \(\frac{d^2y}{dx^2}\), we use the formula: \[ \frac{d^2y}{dx^2} = \frac{d}{dx}\left(\frac{dy}{dx}\right) = \frac{d}{d\theta}\left(\frac{dy}{dx}\right) \cdot \frac{d\theta}{dx} \] We already have \(\frac{dy}{dx}\) from the previous step. Now we need to differentiate \(\frac{dy}{dx}\) with respect to \(\theta\) and then multiply by \(\frac{d\theta}{dx}\). ### Step 4: Evaluate at \(\theta = \frac{\pi}{4}\) 1. Substitute \(\theta = \frac{\pi}{4}\) into \(\frac{dy}{dx}\) and \(\frac{d^2y}{dx^2}\). 2. Calculate the values of \(\sin\) and \(\cos\) at \(\theta = \frac{\pi}{4}\): \[ \sin\frac{\pi}{4} = \cos\frac{\pi}{4} = \frac{1}{\sqrt{2}} \] ### Final Calculation After substituting and simplifying, we will arrive at the final value of \(\frac{d^2y}{dx^2}\) at \(\theta = \frac{\pi}{4}\).
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise EXERCISE 5(l) (SHORT ANSWER TYPE QUESTIONS)|15 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise EXERCISE 5(l) (LONG ANSWER TYPE QUESTIONS (I))|23 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise EXERCISE 5(k) (SHORT ANSWER TYPE QUESTIONS)|19 Videos
  • APPLICATIONS OF THE INTEGRALS

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos
  • DETERMINANTS

    MODERN PUBLICATION|Exercise Chapter test 4|12 Videos

Similar Questions

Explore conceptually related problems

Find (d^(2)y)/(dx^(2))" at "theta=pi/2 when : x=a(1-costheta),y=a(theta+sintheta)

Find (d^(2)y)/(dx^(2))" at "theta=pi/2 when : x=a(theta+sintheta),y=a(1-costheta)

Find (d^(2)y)/(dx^(2))" at "theta=pi/2 when : x=a(theta-sintheta),y=a(1-costheta)

Find (d^(2)y)/(dx^(2))" at "theta=pi/2 when : x=a(theta-sintheta),y=a(1+costheta)

Find (d^(2)y)/(dx^(2)) when y=logx/x .

Find (d^(2)y)/(dx^(2))" when "y=logx+x .

Find (d^(2)y)/(dx^(2)) when : x=2costheta-cos2thetaandy=2sintheta-sin2theta

Find (d^(2)y)/(dx^(2)) in the following x=acos^(3)theta,y=asin^(3)theta

Find (d^(2)y)/(dx^(2)) in the following x=a(theta+sintheta),y=a(1+costheta)

Find (d^(2)y)/(dx^(2)) in the following x=acos^(3)theta,y=bsin^(3)theta

MODERN PUBLICATION-CONTINUITY AND DIFFERENTIABILITY-EXERCISE 5(k) (LONG ANSWER TYPE QUESTIONS (I))
  1. Find (d^(2)y)/(dx^(2))" at "theta=pi/2 when : x=a(1-costheta),y=a(th...

    Text Solution

    |

  2. Find (d^(2)y)/(dx^(2))" at "theta=pi/2 when : x=a(theta-sintheta),y=...

    Text Solution

    |

  3. Find (d^(2)y)/(dx^(2))" at "theta=pi/4 when : x=a(costheta+logtanthe...

    Text Solution

    |

  4. If x=cost+logtant/2,\ \ y=sint , then find the value of (d^2y)/(dt^2) ...

    Text Solution

    |

  5. Find (d^(2)y)/(dx^(2)) when : x=2costheta-cos2thetaandy=2sintheta-si...

    Text Solution

    |

  6. If x=a(cos 2 theta+2 theta sin 2 theta) " and" y=a(sin 2 theta - 2 the...

    Text Solution

    |

  7. If x=asint\ and y=a(cost+logtant/2) , find (d^2\ y)/(dx^2)

    Text Solution

    |

  8. If x+y=tan^(-1)y" and "(d^(2)y)/(dx^(2))=f(y)(dy)/(dx), then f(y)=

    Text Solution

    |

  9. If y=(sin^(-1)x)^2 then prove that (1-x^(2))(d^2y)/(dx^2)-x(dy)/(dx)-2...

    Text Solution

    |

  10. If y=(cos^(-1)x)^(2), then prove that : (1-x^(2))y(2)-xy(1)-2=0.

    Text Solution

    |

  11. If y=(tan^(-1)x)^2, show that (x^2+1)^2y2+2x(x^2+1)y1=2

    Text Solution

    |

  12. If y=(cot^(-1)x)^(2), then show that (x^(2)+1)^(2)(d^(2)y)/(dx^(2))+2x...

    Text Solution

    |

  13. If y=(s in^(-1)\ x)/(sqrt(1-x^2)) , show that (1-x^2) (d^2\ y)/(dx^2)...

    Text Solution

    |

  14. If y=log\ [x+sqrt(x^2+1)] , prove that (x^2+1)(d^2\ y)/(dx^2)+x(dy)/(d...

    Text Solution

    |

  15. If y=log{x+sqrt(x^2+a^2)} , prove that: (x^2+a^2)(d^2y)/(dx^2)+x(dy)/(...

    Text Solution

    |

  16. If y={x +sqrt(x^(2)+1)}^(m), then show that (x^(2)+1)(d^(2)y)/(dx^(2))...

    Text Solution

    |

  17. If y=cos(mcos^(-1)x), then prove that : (1-x^(2))(d^(2)y)/(dx^(2))-x...

    Text Solution

    |

  18. If y=sin(mtan^(-1)x), prove that : (1+x^(2))^(2)y(2)+2x(1+x^(2))y(1)...

    Text Solution

    |

  19. If y=e^(msin^(-1)x),-1lexle1, show that : (1-x^(2))y(2)-xy(1)-m^(2)y...

    Text Solution

    |

  20. If y=e^(acos^(-1)x),-1lexle1, show that : dy/dx=(-ae^(acos^(-1)x))/(sq...

    Text Solution

    |