Home
Class 12
MATHS
Find (d^(2)y)/(dx^(2)) when : x=2costh...

Find `(d^(2)y)/(dx^(2))` when :
`x=2costheta-cos2thetaandy=2sintheta-sin2theta`

Text Solution

AI Generated Solution

The correct Answer is:
To find the second derivative \(\frac{d^2y}{dx^2}\) given the parametric equations \(x = 2\cos\theta - \cos 2\theta\) and \(y = 2\sin\theta - \sin 2\theta\), we will follow these steps: ### Step 1: Differentiate \(x\) with respect to \(\theta\) Given: \[ x = 2\cos\theta - \cos 2\theta \] Differentiating \(x\) with respect to \(\theta\): \[ \frac{dx}{d\theta} = -2\sin\theta + 2\sin 2\theta \] ### Step 2: Differentiate \(y\) with respect to \(\theta\) Given: \[ y = 2\sin\theta - \sin 2\theta \] Differentiating \(y\) with respect to \(\theta\): \[ \frac{dy}{d\theta} = 2\cos\theta - 2\cos 2\theta \] ### Step 3: Find \(\frac{dy}{dx}\) Using the chain rule: \[ \frac{dy}{dx} = \frac{dy/d\theta}{dx/d\theta} \] Substituting the derivatives we found: \[ \frac{dy}{dx} = \frac{2\cos\theta - 2\cos 2\theta}{-2\sin\theta + 2\sin 2\theta} \] ### Step 4: Simplify \(\frac{dy}{dx}\) Factoring out the common terms: \[ \frac{dy}{dx} = \frac{2(\cos\theta - \cos 2\theta)}{2(-\sin\theta + \sin 2\theta)} = \frac{\cos\theta - \cos 2\theta}{-\sin\theta + \sin 2\theta} \] ### Step 5: Differentiate \(\frac{dy}{dx}\) with respect to \(\theta\) Using the quotient rule: \[ \frac{d^2y}{dx^2} = \frac{\frac{d}{d\theta}\left(\frac{dy}{dx}\right)}{\frac{dx}{d\theta}} \] Let \(u = \cos\theta - \cos 2\theta\) and \(v = -\sin\theta + \sin 2\theta\): \[ \frac{d^2y}{dx^2} = \frac{v\frac{du}{d\theta} - u\frac{dv}{d\theta}}{v^2} \cdot \frac{1}{\frac{dx}{d\theta}} \] ### Step 6: Find \(\frac{du}{d\theta}\) and \(\frac{dv}{d\theta}\) Calculating: \[ \frac{du}{d\theta} = -\sin\theta + 2\sin 2\theta \] \[ \frac{dv}{d\theta} = -\cos\theta + 2\cos 2\theta \] ### Step 7: Substitute back into the formula Substituting \(u\), \(v\), \(\frac{du}{d\theta}\), and \(\frac{dv}{d\theta}\) into the expression for \(\frac{d^2y}{dx^2}\): \[ \frac{d^2y}{dx^2} = \frac{(-\sin\theta + 2\sin 2\theta)(-\sin\theta + \sin 2\theta) - (\cos\theta - \cos 2\theta)(-\cos\theta + 2\cos 2\theta)}{(-\sin\theta + \sin 2\theta)^2} \cdot \frac{1}{\frac{dx}{d\theta}} \] ### Step 8: Final expression After simplification, we can express \(\frac{d^2y}{dx^2}\) in terms of \(\theta\).
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise EXERCISE 5(l) (SHORT ANSWER TYPE QUESTIONS)|15 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise EXERCISE 5(l) (LONG ANSWER TYPE QUESTIONS (I))|23 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise EXERCISE 5(k) (SHORT ANSWER TYPE QUESTIONS)|19 Videos
  • APPLICATIONS OF THE INTEGRALS

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos
  • DETERMINANTS

    MODERN PUBLICATION|Exercise Chapter test 4|12 Videos

Similar Questions

Explore conceptually related problems

Find (dy)/(dx) , if x=costheta-cos2theta , y=sintheta-sin2theta

Find (dy)/(dx) , when x=costheta+cos2 theta,y=sin theta+sin2theta

Find (dy)/(dx) if x=cos theta - cos 2 theta and" "y = sin theta - sin 2theta

Find (dy)/(dx) if x= 3 cos theta - cos 2theta and y= sin theta - sin 2theta.

Find (dy)/(dx) , " if x " = 2 cos theta - cos 2 theta and y = 2sin theta - sin 2 theta .

If x=2cos theta -cos 2theta ,y=2sin theta -sin 2theta ,then (dy)/(dx) =

x=3costheta-2cos^(3)theta, y = 3 sin theta- 2 sin^(3) theta

Find (d^(2)y)/(dx^(2))" at "theta=pi/2 when : x=a(1-costheta),y=a(theta+sintheta)

If x=2 cos theta- cos 2 theta and y=2 sin theta - sin 2 theta, then (dy)/(dx) =

Find (d^(2)y)/(dx^(2))" at "theta=pi/2 when : x=a(theta-sintheta),y=a(1-costheta)

MODERN PUBLICATION-CONTINUITY AND DIFFERENTIABILITY-EXERCISE 5(k) (LONG ANSWER TYPE QUESTIONS (I))
  1. Find (d^(2)y)/(dx^(2))" at "theta=pi/4 when : x=a(costheta+logtanthe...

    Text Solution

    |

  2. If x=cost+logtant/2,\ \ y=sint , then find the value of (d^2y)/(dt^2) ...

    Text Solution

    |

  3. Find (d^(2)y)/(dx^(2)) when : x=2costheta-cos2thetaandy=2sintheta-si...

    Text Solution

    |

  4. If x=a(cos 2 theta+2 theta sin 2 theta) " and" y=a(sin 2 theta - 2 the...

    Text Solution

    |

  5. If x=asint\ and y=a(cost+logtant/2) , find (d^2\ y)/(dx^2)

    Text Solution

    |

  6. If x+y=tan^(-1)y" and "(d^(2)y)/(dx^(2))=f(y)(dy)/(dx), then f(y)=

    Text Solution

    |

  7. If y=(sin^(-1)x)^2 then prove that (1-x^(2))(d^2y)/(dx^2)-x(dy)/(dx)-2...

    Text Solution

    |

  8. If y=(cos^(-1)x)^(2), then prove that : (1-x^(2))y(2)-xy(1)-2=0.

    Text Solution

    |

  9. If y=(tan^(-1)x)^2, show that (x^2+1)^2y2+2x(x^2+1)y1=2

    Text Solution

    |

  10. If y=(cot^(-1)x)^(2), then show that (x^(2)+1)^(2)(d^(2)y)/(dx^(2))+2x...

    Text Solution

    |

  11. If y=(s in^(-1)\ x)/(sqrt(1-x^2)) , show that (1-x^2) (d^2\ y)/(dx^2)...

    Text Solution

    |

  12. If y=log\ [x+sqrt(x^2+1)] , prove that (x^2+1)(d^2\ y)/(dx^2)+x(dy)/(d...

    Text Solution

    |

  13. If y=log{x+sqrt(x^2+a^2)} , prove that: (x^2+a^2)(d^2y)/(dx^2)+x(dy)/(...

    Text Solution

    |

  14. If y={x +sqrt(x^(2)+1)}^(m), then show that (x^(2)+1)(d^(2)y)/(dx^(2))...

    Text Solution

    |

  15. If y=cos(mcos^(-1)x), then prove that : (1-x^(2))(d^(2)y)/(dx^(2))-x...

    Text Solution

    |

  16. If y=sin(mtan^(-1)x), prove that : (1+x^(2))^(2)y(2)+2x(1+x^(2))y(1)...

    Text Solution

    |

  17. If y=e^(msin^(-1)x),-1lexle1, show that : (1-x^(2))y(2)-xy(1)-m^(2)y...

    Text Solution

    |

  18. If y=e^(acos^(-1)x),-1lexle1, show that : dy/dx=(-ae^(acos^(-1)x))/(sq...

    Text Solution

    |

  19. If y=e^acos^((-1)x),-1lt=xlt=1,show that (1-x^2)(d^2y)/(dx^2)-x(dy)/(d...

    Text Solution

    |

  20. If y=e^(mtan^(-1)x), prove that : (1+x^(2))(d^(2)y)/(dx^(2))+(2x-m)d...

    Text Solution

    |