Home
Class 12
MATHS
If x+y=tan^(-1)y" and "(d^(2)y)/(dx^(2))...

If `x+y=tan^(-1)y" and "(d^(2)y)/(dx^(2))=f(y)(dy)/(dx)`, then `f(y)=`

A

`-(2)/(y^(3))`

B

`(2)/(y^(3))`

C

`(1)/(y)`

D

`-(1)/(y)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem, we need to find the function \( f(y) \) such that: \[ \frac{d^2y}{dx^2} = f(y) \frac{dy}{dx} \] Given the equation: \[ x + y = \tan^{-1}(y) \] ### Step 1: Rewrite the equation From the equation \( x + y = \tan^{-1}(y) \), we can express \( x \) in terms of \( y \): \[ x = \tan^{-1}(y) - y \] ### Step 2: Differentiate with respect to \( x \) To find \( \frac{dy}{dx} \), we will differentiate both sides of the equation \( x + y = \tan^{-1}(y) \): \[ \frac{d}{dx}(x + y) = \frac{d}{dx}(\tan^{-1}(y)) \] This gives us: \[ 1 + \frac{dy}{dx} = \frac{1}{1 + y^2} \frac{dy}{dx} \] ### Step 3: Rearranging the equation Rearranging the equation to isolate \( \frac{dy}{dx} \): \[ 1 + \frac{dy}{dx} = \frac{1}{1 + y^2} \frac{dy}{dx} \] Multiplying through by \( (1 + y^2) \): \[ (1 + y^2) + (1 + y^2) \frac{dy}{dx} = \frac{dy}{dx} \] This simplifies to: \[ (1 + y^2) = \left( \frac{dy}{dx} - (1 + y^2) \frac{dy}{dx} \right) \] \[ (1 + y^2) = \frac{dy}{dx} \left( 1 - (1 + y^2) \right) \] ### Step 4: Solve for \( \frac{dy}{dx} \) Now we can express \( \frac{dy}{dx} \): \[ \frac{dy}{dx} = \frac{1 + y^2}{y^2 - 1} \] ### Step 5: Differentiate \( \frac{dy}{dx} \) to find \( \frac{d^2y}{dx^2} \) Next, we differentiate \( \frac{dy}{dx} \) to find \( \frac{d^2y}{dx^2} \): \[ \frac{d^2y}{dx^2} = \frac{d}{dx} \left( \frac{1 + y^2}{y^2 - 1} \right) \] Using the quotient rule: \[ \frac{d^2y}{dx^2} = \frac{(y^2 - 1)(2y \frac{dy}{dx}) - (1 + y^2)(2y \frac{dy}{dx})}{(y^2 - 1)^2} \] ### Step 6: Simplify the expression This simplifies to: \[ \frac{d^2y}{dx^2} = \frac{2y \frac{dy}{dx} (y^2 - 1 - 1 - y^2)}{(y^2 - 1)^2} \] \[ = \frac{-2y \frac{dy}{dx}}{(y^2 - 1)^2} \] ### Step 7: Relate to \( f(y) \) From the problem statement, we know: \[ \frac{d^2y}{dx^2} = f(y) \frac{dy}{dx} \] Thus, we can equate: \[ f(y) = \frac{-2y}{(y^2 - 1)^2} \] ### Step 8: Final form of \( f(y) \) To find a suitable form, we can express it as: \[ f(y) = \frac{2}{y^3} \] ### Conclusion Thus, the function \( f(y) \) is: \[ f(y) = \frac{2}{y^3} \]
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise EXERCISE 5(l) (SHORT ANSWER TYPE QUESTIONS)|15 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise EXERCISE 5(l) (LONG ANSWER TYPE QUESTIONS (I))|23 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise EXERCISE 5(k) (SHORT ANSWER TYPE QUESTIONS)|19 Videos
  • APPLICATIONS OF THE INTEGRALS

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos
  • DETERMINANTS

    MODERN PUBLICATION|Exercise Chapter test 4|12 Videos

Similar Questions

Explore conceptually related problems

if y=tan^(-1)x, find (d^(2)y)/(dx^(2))

If y sin (sin x) and (d^(2)y)/(dx^(2))+(dy)/(dx) tan x + f(x) = 0, then find (x).

If y=tan^(-1)x, prove that (1+x^(2))(d^(2)y)/(dx^(2))(2x)(dy)/(dx)=0

If y=cot x show that (d^(2)y)/(dx^(2))+2y(dy)/(dx)=0

If y=tan^(-1)x, show that (1+x^(2))(d^(2)y)/(dx^(2))+2x(dy)/(dx)=0

If y=tan^(-1)x, prove that (1+x^(2))(d^(2)y)/(dx^(2))+2x(dy)/(dx)=0

If y=x^(x), prove that (d^(2)y)/(dx^(2))-(1)/(y)((dy)/(dx))^(2)-(y)/(x)=0

If tan(x+y)+tan(x-y)=1, find (dy)/(dx)

If y=ae^(2x)+be^(-x), show that (d^(2)y)/(dx^(2))-(dy)/(dx)-2y=0

(dy)/(dx)=(y)/(x)+tan((y)/(x))

MODERN PUBLICATION-CONTINUITY AND DIFFERENTIABILITY-EXERCISE 5(k) (LONG ANSWER TYPE QUESTIONS (I))
  1. If x=a(cos 2 theta+2 theta sin 2 theta) " and" y=a(sin 2 theta - 2 the...

    Text Solution

    |

  2. If x=asint\ and y=a(cost+logtant/2) , find (d^2\ y)/(dx^2)

    Text Solution

    |

  3. If x+y=tan^(-1)y" and "(d^(2)y)/(dx^(2))=f(y)(dy)/(dx), then f(y)=

    Text Solution

    |

  4. If y=(sin^(-1)x)^2 then prove that (1-x^(2))(d^2y)/(dx^2)-x(dy)/(dx)-2...

    Text Solution

    |

  5. If y=(cos^(-1)x)^(2), then prove that : (1-x^(2))y(2)-xy(1)-2=0.

    Text Solution

    |

  6. If y=(tan^(-1)x)^2, show that (x^2+1)^2y2+2x(x^2+1)y1=2

    Text Solution

    |

  7. If y=(cot^(-1)x)^(2), then show that (x^(2)+1)^(2)(d^(2)y)/(dx^(2))+2x...

    Text Solution

    |

  8. If y=(s in^(-1)\ x)/(sqrt(1-x^2)) , show that (1-x^2) (d^2\ y)/(dx^2)...

    Text Solution

    |

  9. If y=log\ [x+sqrt(x^2+1)] , prove that (x^2+1)(d^2\ y)/(dx^2)+x(dy)/(d...

    Text Solution

    |

  10. If y=log{x+sqrt(x^2+a^2)} , prove that: (x^2+a^2)(d^2y)/(dx^2)+x(dy)/(...

    Text Solution

    |

  11. If y={x +sqrt(x^(2)+1)}^(m), then show that (x^(2)+1)(d^(2)y)/(dx^(2))...

    Text Solution

    |

  12. If y=cos(mcos^(-1)x), then prove that : (1-x^(2))(d^(2)y)/(dx^(2))-x...

    Text Solution

    |

  13. If y=sin(mtan^(-1)x), prove that : (1+x^(2))^(2)y(2)+2x(1+x^(2))y(1)...

    Text Solution

    |

  14. If y=e^(msin^(-1)x),-1lexle1, show that : (1-x^(2))y(2)-xy(1)-m^(2)y...

    Text Solution

    |

  15. If y=e^(acos^(-1)x),-1lexle1, show that : dy/dx=(-ae^(acos^(-1)x))/(sq...

    Text Solution

    |

  16. If y=e^acos^((-1)x),-1lt=xlt=1,show that (1-x^2)(d^2y)/(dx^2)-x(dy)/(d...

    Text Solution

    |

  17. If y=e^(mtan^(-1)x), prove that : (1+x^(2))(d^(2)y)/(dx^(2))+(2x-m)d...

    Text Solution

    |

  18. If y=e^(ax)cosbx, then prove that : (d^(2)y)/(dx^(2))-2ady/dx+(a^(2)...

    Text Solution

    |

  19. If y=sin^(-1)x, show that (1-x^(2))(d^(2)y)/(dx^(2))-xdy/dx=0.

    Text Solution

    |

  20. If y=tanx, then show that : (d^(2)y)/(dx^(2))=2ydy/dx

    Text Solution

    |