Home
Class 12
MATHS
If x=t^2y=t^3,t h e n(d^(2y))/(dx^2)= 3...

If `x=t^2y=t^3,t h e n(d^(2y))/(dx^2)=` `3/2` (b) `3/((4t))` (c) `3/(2(t))` (d) `(3t)/2`

A

`3/2`

B

`3/(4t)`

C

`3/(2t)`

D

`(3t)/(2)`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise OBJECTIVE TYPE QUESTIONS (FILL IN THE BLANKS)|10 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise OBJECTIVE TYPE QUESTIONS (TRUE/FALSE QUESTION)|3 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise EXERCISE 5(m) (LONG ANSWER TYPE QUESTIONS (I))|26 Videos
  • APPLICATIONS OF THE INTEGRALS

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos
  • DETERMINANTS

    MODERN PUBLICATION|Exercise Chapter test 4|12 Videos

Similar Questions

Explore conceptually related problems

If x=t^(2),y=t^(3), then (d^(2)y)/(dx^(2))=(a)(3)/(2)(b)(3)/((4t)) (c) (3)/(2(t)) (d) (3t)/(2)

If x=t^(2),quad y=t^(3), then (d^(2)y)/(dx^(2))=3/2(b)3/4t(c)3/2t(d)3t/2

If x=tlogt,y=t^(t)," then "(d^2y)/(dx^(2))=

If x=t^(2) and y=t^(3)+1 , then (d^(2)y)/(dx^(2)) is

If x=t^(2) and y=t^(3), find (d^(2)y)/(dx^(2))

If x=t^(2),y=t^(3) what is (d^(2)y)/(dx^(2)) equal to ?

If x=at^(2),y=2at, then (d^(2)y)/(dx^(2))=-(1)/(t^(2))(b)(1)/(2at^(3))(c)-(1)/(t^(3))(d)-(1)/(2at^(3))

If x=t^(3)+t+5 and y=sin t then (d^(2)y)/(dx^(2))

If x = t^(2) and y = t^(3) , then (d^(2)y)/(dx^(2)) is equal to

If x = t^(2) and y = t^(3) , then (d^(2)y)/(dx^(2)) is equal to