Home
Class 12
MATHS
If y=log(tanx),"then "dy/dx is :...

If `y=log(tanx),"then "dy/dx` is :

A

`1/tanx`

B

`sec^(2)x/tanx`

C

`sec^(2)x`

D

0

Text Solution

AI Generated Solution

The correct Answer is:
To find the derivative of \( y = \log(\tan x) \), we will use the chain rule and the properties of logarithms. Here’s the step-by-step solution: ### Step 1: Differentiate \( y \) with respect to \( x \) We start with the function: \[ y = \log(\tan x) \] To differentiate \( y \) with respect to \( x \), we apply the chain rule. The derivative of \( \log(u) \) is \( \frac{1}{u} \cdot \frac{du}{dx} \). ### Step 2: Identify \( u \) and find \( \frac{du}{dx} \) Here, \( u = \tan x \). Now we need to find \( \frac{du}{dx} \): \[ \frac{du}{dx} = \sec^2 x \] This is because the derivative of \( \tan x \) is \( \sec^2 x \). ### Step 3: Apply the chain rule Now we can apply the chain rule: \[ \frac{dy}{dx} = \frac{1}{\tan x} \cdot \frac{du}{dx} = \frac{1}{\tan x} \cdot \sec^2 x \] ### Step 4: Simplify the expression Now we simplify the expression: \[ \frac{dy}{dx} = \frac{\sec^2 x}{\tan x} \] Using the identity \( \tan x = \frac{\sin x}{\cos x} \) and \( \sec x = \frac{1}{\cos x} \), we can rewrite \( \frac{dy}{dx} \): \[ \frac{dy}{dx} = \frac{\sec^2 x}{\frac{\sin x}{\cos x}} = \frac{\sec^2 x \cdot \cos x}{\sin x} \] This simplifies to: \[ \frac{dy}{dx} = \frac{\sec^2 x \cdot \cos x}{\sin x} \] ### Final Result Thus, the final result for \( \frac{dy}{dx} \) is: \[ \frac{dy}{dx} = \frac{\sec^2 x}{\tan x} \]
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise OBJECTIVE TYPE QUESTIONS (FILL IN THE BLANKS)|10 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise OBJECTIVE TYPE QUESTIONS (TRUE/FALSE QUESTION)|3 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise EXERCISE 5(m) (LONG ANSWER TYPE QUESTIONS (I))|26 Videos
  • APPLICATIONS OF THE INTEGRALS

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos
  • DETERMINANTS

    MODERN PUBLICATION|Exercise Chapter test 4|12 Videos

Similar Questions

Explore conceptually related problems

y=x^(tanx) then (dy)/(dx) is

If y=log(cose^(x))," then "dy/dx = _______.

If y=log(x+7)^4 , then dy/dx=?

If y=log(x^5+4) , then dy/dx=?

If y=log_(sinx)(tanx), then (dy)/ (dx) at x=(1)/(4) is equal to

If y=log x^(x), then (dy)/(dx)=

If y =log x^(x) ,then (dy)/(dx) =

If y=log(e^(x^2)) , then dy/dx=?

Consider the following statements: 1. If y=ln(secx+tanx), then (dy)/(dx)=secx. 2. If y=ln("cosecx-cotx) , then (dy)/(dx)="cosec x". Which of the above is/are correct?