Home
Class 12
MATHS
d/dx(tan^(-1)x) is :...

`d/dx(tan^(-1)x)` is :

A

`1/(1+x^(2))`

B

`1/(1-x^(2))`

C

`(-1)/(1+x^(2))`

D

`(-1)/(1-x^(2))`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise OBJECTIVE TYPE QUESTIONS (FILL IN THE BLANKS)|10 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise OBJECTIVE TYPE QUESTIONS (TRUE/FALSE QUESTION)|3 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise EXERCISE 5(m) (LONG ANSWER TYPE QUESTIONS (I))|26 Videos
  • APPLICATIONS OF THE INTEGRALS

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos
  • DETERMINANTS

    MODERN PUBLICATION|Exercise Chapter test 4|12 Videos

Similar Questions

Explore conceptually related problems

d/(dx)(tan^(-1) ((cos x)/(1+sinx)) =

If y=f(x) is a differentiable function x such that invrse function x=f^(-1) y exists, then prove that x is a differentiable function of y and (dx)/(dy)=(1)/((dy)/(dx)) where (dy)/(dx) ne0 Hence, find (d)/(dx)(tan^(-1)x) .

(d)/(dx)(tan^(-1)((x)/(sqrt(a^(2)-x^(2))))

Prove that (d)/(dx)(tan^(-1)x)=(1)/((1+x^(2))) , where x in R and y in [-(pi)/(2),(pi)/(2)] .

(d)/(dx)(tan^(-1)(sec x+tan x))=...

(d)/(dx)[sec(tan^(-1)x)]=

If (d)/(dx)[cot^(-1)(x+1)]+(d)/(dx)(tan^(-1)x)=(d)/(dx)(tan^(-1)u)," then "u=

(d)/(dx)tan^(-1)((x)/(1-sqrt(1+x^(2))))]=

Find (d)/(dx)tan^(-1)((x)/(1+sqrt(1-x^(2))))

(d)/(dx)[tan^(-1)((x-sqrt(a^(2)-x^(2)))/(x+sqrt(a^(2)-x^(2))))]=