Home
Class 12
MATHS
If y=a^(x)x^(a),"then "dy/dx is equal to...

If `y=a^(x)x^(a),"then "dy/dx` is equal to :

A

`a^(x)x^(a-1)(a-xloga)`

B

`a^(x)x^(a-1)(a+xloga)`

C

`a^(x)x^(a)(a+xloga)`

D

`a^(x)x^(a-1)(x+aloga)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the derivative of the function \( y = a^x x^a \), we will use the product rule and the chain rule of differentiation. ### Step-by-Step Solution: 1. **Identify the function**: \[ y = a^x \cdot x^a \] 2. **Apply the product rule**: The product rule states that if you have two functions \( u \) and \( v \), then the derivative \( \frac{d}{dx}(uv) = u \frac{dv}{dx} + v \frac{du}{dx} \). Here, let: - \( u = a^x \) - \( v = x^a \) 3. **Differentiate \( u \)**: \[ \frac{du}{dx} = \frac{d}{dx}(a^x) = a^x \ln(a) \] 4. **Differentiate \( v \)**: \[ \frac{dv}{dx} = \frac{d}{dx}(x^a) = a x^{a-1} \] 5. **Substitute into the product rule**: \[ \frac{dy}{dx} = u \frac{dv}{dx} + v \frac{du}{dx} \] Substituting \( u \) and \( v \): \[ \frac{dy}{dx} = a^x \cdot (a x^{a-1}) + x^a \cdot (a^x \ln(a)) \] 6. **Simplify the expression**: \[ \frac{dy}{dx} = a^{x+1} x^{a-1} + a^x x^a \ln(a) \] 7. **Final result**: \[ \frac{dy}{dx} = a^x \left( a x^{a-1} + x^a \ln(a) \right) \]
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise OBJECTIVE TYPE QUESTIONS (FILL IN THE BLANKS)|10 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise OBJECTIVE TYPE QUESTIONS (TRUE/FALSE QUESTION)|3 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise EXERCISE 5(m) (LONG ANSWER TYPE QUESTIONS (I))|26 Videos
  • APPLICATIONS OF THE INTEGRALS

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos
  • DETERMINANTS

    MODERN PUBLICATION|Exercise Chapter test 4|12 Videos

Similar Questions

Explore conceptually related problems

If y^(x) = x^(y) , "then" (dy)/(dx) is equal to

If x^(y)=e^(x-y) , then dy//dx is equal to which one of the following ?

For the function if y = x ^(x ^(x^(x^----∞), then (dy)/(dx) is equal to :

If y^x+x^y=a^b , then (dy)/(dx) is equal to........

If x^(y)=e^(x-3) then dy/dx is equal to which one of the following ?