Home
Class 12
MATHS
If y=e^(sinsqrtx),"then "dy/dx is :...

If `y=e^(sinsqrtx),"then "dy/dx` is :

A

`e^(sinsqrtx)cossqrtx`

B

`(e^(sinsqrtx)cossqrtx)/(2sqrtx)`

C

`(e^(sinsqrtx))/(2sqrtx)`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To find the derivative of the function \( y = e^{\sin(\sqrt{x})} \), we will use the chain rule for differentiation. Let's go through the steps: ### Step 1: Differentiate the function We start with the function: \[ y = e^{\sin(\sqrt{x})} \] To differentiate \( y \) with respect to \( x \), we apply the chain rule. The derivative of \( e^u \) with respect to \( x \) is \( e^u \cdot \frac{du}{dx} \), where \( u = \sin(\sqrt{x}) \). ### Step 2: Differentiate the outer function The outer function is \( e^{u} \), where \( u = \sin(\sqrt{x}) \). Thus, we have: \[ \frac{dy}{dx} = e^{\sin(\sqrt{x})} \cdot \frac{d}{dx}(\sin(\sqrt{x})) \] ### Step 3: Differentiate the inner function Next, we need to differentiate \( \sin(\sqrt{x}) \). Again, we apply the chain rule: \[ \frac{d}{dx}(\sin(\sqrt{x})) = \cos(\sqrt{x}) \cdot \frac{d}{dx}(\sqrt{x}) \] ### Step 4: Differentiate \( \sqrt{x} \) Now, we differentiate \( \sqrt{x} \): \[ \frac{d}{dx}(\sqrt{x}) = \frac{1}{2\sqrt{x}} \] ### Step 5: Combine the results Now we can substitute back into our derivative: \[ \frac{d}{dx}(\sin(\sqrt{x})) = \cos(\sqrt{x}) \cdot \frac{1}{2\sqrt{x}} \] Substituting this back into our expression for \( \frac{dy}{dx} \): \[ \frac{dy}{dx} = e^{\sin(\sqrt{x})} \cdot \left(\cos(\sqrt{x}) \cdot \frac{1}{2\sqrt{x}}\right) \] ### Final Result Thus, we have: \[ \frac{dy}{dx} = \frac{e^{\sin(\sqrt{x})} \cdot \cos(\sqrt{x})}{2\sqrt{x}} \] ### Summary of the Steps 1. Differentiate the outer function \( e^{u} \). 2. Differentiate the inner function \( \sin(\sqrt{x}) \) using the chain rule. 3. Differentiate \( \sqrt{x} \). 4. Combine the results to get the final derivative.
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise OBJECTIVE TYPE QUESTIONS (FILL IN THE BLANKS)|10 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise OBJECTIVE TYPE QUESTIONS (TRUE/FALSE QUESTION)|3 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise EXERCISE 5(m) (LONG ANSWER TYPE QUESTIONS (I))|26 Videos
  • APPLICATIONS OF THE INTEGRALS

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos
  • DETERMINANTS

    MODERN PUBLICATION|Exercise Chapter test 4|12 Videos

Similar Questions

Explore conceptually related problems

If y = e^(sin sqrtx) " then " (dy)/(dx) = ?

If y=e^(sinx) then (dy)/(dx)=

If x^y = e^(x-y) " then " dy/dx ?

If y=e^(sin^(2)x) then (dy)/(dx)=

If y=e^(sinx^(2)) then (dy)/(dx)=

if y = e^(sqrt(x)) , then (dy)/(dx) equals

If y=e^(1+logx)," then: "(dy)/(dx)

If y= e^(xy), then (dy)/(dx) =

If y= x^(e^(x)) ,then (dy)/(dx) =