Home
Class 12
MATHS
If y="tan"^(-1)x/2-"cot"^(-1)x/2,"then "...

If `y="tan"^(-1)x/2-"cot"^(-1)x/2,"then "dy/dx` is :

A

`4/(4+x^(2))`

B

`2/(4+x^(2))`

C

`1/(4+x^(2))`

D

`2/(1+x^(2))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to differentiate the function given by: \[ y = \tan^{-1}\left(\frac{x}{2}\right) - \cot^{-1}\left(\frac{x}{2}\right) \] ### Step 1: Differentiate \( y \) Using the differentiation formulas for inverse trigonometric functions: 1. The derivative of \( \tan^{-1}(u) \) is \( \frac{1}{1 + u^2} \cdot \frac{du}{dx} \) 2. The derivative of \( \cot^{-1}(u) \) is \( -\frac{1}{1 + u^2} \cdot \frac{du}{dx} \) Let \( u = \frac{x}{2} \). Then, \( \frac{du}{dx} = \frac{1}{2} \). Now we can differentiate \( y \): \[ \frac{dy}{dx} = \frac{d}{dx}\left(\tan^{-1}\left(\frac{x}{2}\right)\right) - \frac{d}{dx}\left(\cot^{-1}\left(\frac{x}{2}\right)\right) \] Using the chain rule: \[ \frac{dy}{dx} = \frac{1}{1 + \left(\frac{x}{2}\right)^2} \cdot \frac{1}{2} - \left(-\frac{1}{1 + \left(\frac{x}{2}\right)^2} \cdot \frac{1}{2}\right) \] ### Step 2: Simplify the expression Now, substituting \( u = \frac{x}{2} \): \[ \frac{dy}{dx} = \frac{1}{1 + \frac{x^2}{4}} \cdot \frac{1}{2} + \frac{1}{1 + \frac{x^2}{4}} \cdot \frac{1}{2} \] Combining the two terms: \[ \frac{dy}{dx} = \frac{1}{2} \cdot \frac{1}{1 + \frac{x^2}{4}} + \frac{1}{2} \cdot \frac{1}{1 + \frac{x^2}{4}} = \frac{1}{1 + \frac{x^2}{4}} \] ### Step 3: Further simplify Now, we can simplify the expression: \[ \frac{dy}{dx} = \frac{1}{2} \cdot \frac{2}{2 + \frac{x^2}{2}} = \frac{2}{2 + \frac{x^2}{2}} = \frac{4}{4 + x^2} \] ### Final Result Thus, the derivative \( \frac{dy}{dx} \) is: \[ \frac{dy}{dx} = \frac{4}{4 + x^2} \] ### Conclusion The answer is \( \frac{4}{4 + x^2} \). ---
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise OBJECTIVE TYPE QUESTIONS (FILL IN THE BLANKS)|10 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise OBJECTIVE TYPE QUESTIONS (TRUE/FALSE QUESTION)|3 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise EXERCISE 5(m) (LONG ANSWER TYPE QUESTIONS (I))|26 Videos
  • APPLICATIONS OF THE INTEGRALS

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos
  • DETERMINANTS

    MODERN PUBLICATION|Exercise Chapter test 4|12 Videos

Similar Questions

Explore conceptually related problems

If y=tan^(-1)(1+2x)+tan^(-1)(1-2x),"then "dy/dx=

If y=tan^(-1) ("cosec x"-cot x),"then " dy/dx=

If y=tan^(-1) (3x^(2)+2),"then "dy/dx=

If y=tan^(-1)(cot((pi)/(2)-x)) then (dy)/(dx) is equal to

If y=tan^(-1)(cot x)+cot^(-1)(tan x), then (dy)/(dx) is equal to (i)1( ii) 0( iii -1 (iv) -2

If y=cot^(-1) ("cosec x"+cot x),"then " dy/dx=

If y=e^(2x)tan^(-1)2x,"then " dy/dx=

If y=tan ^(-1) ((a-x) /(1+x^(2))),then (dy)/(dx) =

If y = tan ^(-1) ((2x)/(1-x^(2))) , " then " (dy)/(dx) =____________

If : y=(1+x^(2))*tan^(-1)x-x," then: "(dy)/(dx)=