Home
Class 12
MATHS
Find dy/dx in the following : y=sin^(-...

Find `dy/dx` in the following :
`y=sin^(-1)(2xsqrt(1-x^(2))),-1/sqrt2ltxlt1/sqrt2`.

Text Solution

AI Generated Solution

Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise EXERCISE 5.4|10 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise EXERCISE 5.5|18 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise EXERCISE 5.2|10 Videos
  • APPLICATIONS OF THE INTEGRALS

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos
  • DETERMINANTS

    MODERN PUBLICATION|Exercise Chapter test 4|12 Videos

Similar Questions

Explore conceptually related problems

Find dy/dx in the following : y=tan^(-1)((3x-x^(3))/(1-3x^(2))),-1/sqrt3ltxlt1/sqrt3

Find (dy)/(dx) in the following: y=sin^(-1)(2x sqrt(1-x^(2))),-(1)/(sqrt(2))

y = sin ^(-1)(2xsqrt(1 - x^(2))),-(1)/sqrt(2) lt x lt (1)/sqrt(2)

If y=sin^(-1)(6xsqrt(1-9x^(2))),-1/(3sqrt2)ltxlt1/(3sqrt2) , then find (dy)/(dx) .

Find the (dy)/(dx) of y=sin^(-1)sqrt(1-x^2)

Find (dy)/(dx) " when " y = sin^(-1) sqrt((1+x^(2))/2)

Find quad (dy)/(dx) if y=sin^(-1)x+sin^(-1)sqrt(1-x^(2)),-1<=x<=1

Prove that sin^(-1) (2xsqrt(1-x^2))=2cos^(-1)x,1/sqrt2 le x le 1

Find (dy)/(dx), if y=sin^(-1)[x sqrt(1-x)-sqrt(x)sqrt(1-x^(2))]

Evaluate the following : int_(0)^(1)x.sqrt((1-x^(2))/(1+x^(2)))dx