Home
Class 12
MATHS
Find f'(x) when f(x)=2^(cos^(2)x)...

Find f'(x) when
`f(x)=2^(cos^(2)x)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the derivative \( f'(x) \) of the function \( f(x) = 2^{\cos^2 x} \), we can follow these steps: ### Step 1: Take the natural logarithm of both sides We start by taking the logarithm of \( f(x) \): \[ \log f(x) = \log(2^{\cos^2 x}) \] ### Step 2: Use the logarithmic property Using the property of logarithms, we can simplify the right side: \[ \log f(x) = \cos^2 x \cdot \log 2 \] ### Step 3: Differentiate both sides Now we differentiate both sides with respect to \( x \). Using the chain rule on the left side and the product rule on the right side: \[ \frac{d}{dx}(\log f(x)) = \frac{1}{f(x)} \cdot f'(x) \] \[ \frac{d}{dx}(\cos^2 x \cdot \log 2) = \log 2 \cdot \frac{d}{dx}(\cos^2 x) \] ### Step 4: Differentiate \( \cos^2 x \) Using the chain rule, we find the derivative of \( \cos^2 x \): \[ \frac{d}{dx}(\cos^2 x) = 2 \cos x \cdot (-\sin x) = -2 \cos x \sin x \] ### Step 5: Substitute back into the derivative Now substituting back, we have: \[ \frac{1}{f(x)} \cdot f'(x) = \log 2 \cdot (-2 \cos x \sin x) \] ### Step 6: Solve for \( f'(x) \) Multiplying both sides by \( f(x) \): \[ f'(x) = f(x) \cdot \log 2 \cdot (-2 \cos x \sin x) \] ### Step 7: Substitute \( f(x) \) back into the equation Recall that \( f(x) = 2^{\cos^2 x} \): \[ f'(x) = 2^{\cos^2 x} \cdot \log 2 \cdot (-2 \cos x \sin x) \] ### Step 8: Simplify the expression We can express \( -2 \cos x \sin x \) as \( -\sin(2x) \): \[ f'(x) = -2^{\cos^2 x} \cdot \log 2 \cdot \sin(2x) \] ### Final Answer Thus, the derivative \( f'(x) \) is: \[ f'(x) = -\log 2 \cdot 2^{\cos^2 x} \cdot \sin(2x) \] ---
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise REVISION EXERCISE|37 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise CHECK YOUR UNDERSTANDING|12 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise MISCELLANEOUS EXERCISE|23 Videos
  • APPLICATIONS OF THE INTEGRALS

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos
  • DETERMINANTS

    MODERN PUBLICATION|Exercise Chapter test 4|12 Videos

Similar Questions

Explore conceptually related problems

Find f^(') when f(x)=x^(3) .

Find f'(2) and f'(5) when f(x)=x^(2)+7x+4

if f(x)=cos(x) then find f'(x)=-6x cos^(2)(x^(2))sin(x)

Find the range of f(x)=cos^2x+sec^2x .

Find the range of f(x), where f(x)=cos(sin(In(x^(2)+e)/(x^(2)+1)))+sin(cos(In(x^(2)+e)/(x^(2)+1)))

find f(4) if f(x)=x^(2)+2x-3

If f(x) = x^(2) - 2x - 3 then find f(A) when A = [(1,2),(2,1)]

f_(1)(x)=sin^(-1)(cos(sin^(2)x)),f_(2)(x)=cos^(-1)(sin(cos^(2)x)),f_(3)(x)=sin^(-1)(cos^(2)x)),f_(4)(x)=cos^(-1)(sin^(2)x)* Then which of the following is/are correct?

Let (d)/(dx)(f(x))=((sin^(12)x-cos^(12)x)/((sin^(2)x-cos^(2)x)(1-3sin^(2)x cos^(2)x))) be such that f(0)=0 then f((pi)/(2)) equals (k pi)/(16). Find the value of k(k in N)