Home
Class 12
MATHS
Find f'(x) when f(x)=sin^(-1)(1/sqrt(x...

Find f'(x) when
`f(x)=sin^(-1)(1/sqrt(x+1))`.

Text Solution

AI Generated Solution

The correct Answer is:
To find the derivative \( f'(x) \) of the function \( f(x) = \sin^{-1}\left(\frac{1}{\sqrt{x+1}}\right) \), we can follow these steps: ### Step 1: Rewrite the Function We start with the function: \[ f(x) = \sin^{-1}\left(\frac{1}{\sqrt{x+1}}\right) \] ### Step 2: Use the Chain Rule To differentiate \( f(x) \), we will use the chain rule. The derivative of \( \sin^{-1}(u) \) is given by: \[ \frac{d}{du} \sin^{-1}(u) = \frac{1}{\sqrt{1-u^2}} \] where \( u = \frac{1}{\sqrt{x+1}} \). ### Step 3: Differentiate the Inner Function Now we need to differentiate \( u = \frac{1}{\sqrt{x+1}} \): \[ u = (x+1)^{-1/2} \] Using the power rule: \[ \frac{du}{dx} = -\frac{1}{2}(x+1)^{-3/2} \cdot 1 = -\frac{1}{2\sqrt{(x+1)^3}} \] ### Step 4: Apply the Chain Rule Now we can apply the chain rule: \[ f'(x) = \frac{1}{\sqrt{1 - u^2}} \cdot \frac{du}{dx} \] Substituting \( u \) and \( \frac{du}{dx} \): \[ f'(x) = \frac{1}{\sqrt{1 - \left(\frac{1}{\sqrt{x+1}}\right)^2}} \cdot \left(-\frac{1}{2\sqrt{(x+1)^3}}\right) \] ### Step 5: Simplify the Expression Now simplify \( 1 - u^2 \): \[ 1 - u^2 = 1 - \frac{1}{x+1} = \frac{(x+1) - 1}{x+1} = \frac{x}{x+1} \] Thus, \[ \sqrt{1 - u^2} = \sqrt{\frac{x}{x+1}} = \frac{\sqrt{x}}{\sqrt{x+1}} \] ### Step 6: Substitute Back into the Derivative Now substituting back into the derivative: \[ f'(x) = \frac{1}{\frac{\sqrt{x}}{\sqrt{x+1}}} \cdot \left(-\frac{1}{2\sqrt{(x+1)^3}}\right) \] This simplifies to: \[ f'(x) = -\frac{\sqrt{x+1}}{2\sqrt{x} \cdot (x+1)^{3/2}} = -\frac{1}{2\sqrt{x} (x+1)} \] ### Final Result Thus, the derivative is: \[ f'(x) = -\frac{1}{2\sqrt{x}(x+1)} \] ---
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise REVISION EXERCISE|37 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise CHECK YOUR UNDERSTANDING|12 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise MISCELLANEOUS EXERCISE|23 Videos
  • APPLICATIONS OF THE INTEGRALS

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos
  • DETERMINANTS

    MODERN PUBLICATION|Exercise Chapter test 4|12 Videos

Similar Questions

Explore conceptually related problems

Find the domain of the function f(x)=sin^(-1)sqrt(x-1)

The domain of definition of f(x)= sin^(-1)sqrt(x-1)

Find domain f(x)=sin^(-1)((x+1)/(x))

Find the domain of the function f(x) defined by f(x)=sqrt(4-x)+1/(sqrt(x^2-1)) .

Find the domain of the function f(x) defined by f(x)=sqrt(4-x)+(1)/(sqrt(x^(2)-1))

Find the domain of each of the following function: f(x)=2^(sin^(-1)x)+1/(sqrt(x-2))

The domain of the function defined by f(x) = sin^(-1)sqrt(x-1) is

Find the domains of f(x)=sin^(-1)((1)/(|x^(2)-1|))

Find the range of the function f(x) =sin^(-1)sqrt(1+x^4)/(1+5x^10)