Home
Class 12
MATHS
If sinx=(2t)/(1+t^(2)),tany=(2t)/(1-t^(2...

If `sinx=(2t)/(1+t^(2)),tany=(2t)/(1-t^(2)),"find "dy/dx`

Text Solution

AI Generated Solution

The correct Answer is:
To find \( \frac{dy}{dx} \) given the equations \( \sin x = \frac{2t}{1+t^2} \) and \( \tan y = \frac{2t}{1-t^2} \), we can follow these steps: ### Step 1: Express \( x \) and \( y \) in terms of \( t \) From the given equations, we can relate \( x \) and \( y \) to \( t \). 1. **For \( \sin x = \frac{2t}{1+t^2} \)**: This can be recognized as the sine double angle formula: \[ \sin x = \sin(2\theta) \quad \text{where } t = \tan(\theta) \] Thus, we can write: \[ x = 2\theta \] 2. **For \( \tan y = \frac{2t}{1-t^2} \)**: This can also be recognized as the tangent double angle formula: \[ \tan y = \tan(2\theta) \] Therefore: \[ y = 2\theta \] ### Step 2: Relate \( x \) and \( y \) From the above expressions, we see that: \[ x = 2\theta \quad \text{and} \quad y = 2\theta \] This implies: \[ x = y \] ### Step 3: Differentiate both sides Now, we differentiate both sides with respect to \( t \): \[ \frac{dx}{dt} = \frac{dy}{dt} \] ### Step 4: Find \( \frac{dy}{dx} \) Using the fact that \( x = y \), we can find \( \frac{dy}{dx} \): \[ \frac{dy}{dx} = \frac{dy/dt}{dx/dt} \] Since \( \frac{dx}{dt} = \frac{dy}{dt} \), we can conclude: \[ \frac{dy}{dx} = 1 \] ### Final Result Thus, the value of \( \frac{dy}{dx} \) is: \[ \frac{dy}{dx} = 1 \]
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise REVISION EXERCISE|37 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise CHECK YOUR UNDERSTANDING|12 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise MISCELLANEOUS EXERCISE|23 Videos
  • APPLICATIONS OF THE INTEGRALS

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos
  • DETERMINANTS

    MODERN PUBLICATION|Exercise Chapter test 4|12 Videos

Similar Questions

Explore conceptually related problems

If sin x=(2t)/(1+t^(2)),tan y=(2t)/(1-t^(2)), find (dy)/(dx)

If sin x=(2t)/(1+t^(2)),tan y=(2t)/(1-t^(2)),quad find (dy)/(dx)

sinx = (2t)/(1+t^(2)), tan y = (2t)/(1-t^(2))

If x=a((1+t^(2))/(1-t^(2))) and y=(2t)/(1-t^(2)), find (dy)/(dx)

If x=a((1+t^(2))/(1-t^(2))) and y=(2t)/(1-t^(2)), find (dy)/(dx)

If x=(2t)/(1+t^(2)),y=(1-t^(2))/(1+t^(2))," then "(dy)/(dx)=

If x=(2t)/(1+t^(2)),y=(1-t^(2))/(1+t^(2)), then find (dy)/(dx) at t=2

"If "x=(2t)/(1+t^(2)),y=(1-t^(2))/(1+t^(2))," then find "(dy)/(dx)" at "t=2.

If x=(1-t^(2))/(1+t^(2)) and y=(2t)/(1+t^(2)) , then (dy)/(dx) is equal to