Home
Class 12
MATHS
If y=sec^(-1)(1/(4x^(3)-3x)),"find "dy/d...

If `y=sec^(-1)(1/(4x^(3)-3x)),"find "dy/dx`.

Text Solution

AI Generated Solution

The correct Answer is:
To find \(\frac{dy}{dx}\) for the function \(y = \sec^{-1}\left(\frac{1}{4x^3 - 3x}\right)\), we can follow these steps: ### Step 1: Substitute \(x\) with \(\cos \theta\) Let us set \(x = \cos \theta\). Then, we can express \(y\) in terms of \(\theta\): \[ y = \sec^{-1}\left(\frac{1}{4(\cos \theta)^3 - 3(\cos \theta)}\right) \] ### Step 2: Simplify the expression inside the secant inverse Using the identity for the cosine of triple angles, we know: \[ 4\cos^3 \theta - 3\cos \theta = \cos(3\theta) \] Thus, we can rewrite \(y\): \[ y = \sec^{-1}\left(\frac{1}{\cos(3\theta)}\right) \] ### Step 3: Use the secant identity Since \(\sec^{-1}(x) = \theta\) when \(x = \sec(\theta)\), we have: \[ y = 3\theta \] ### Step 4: Express \(\theta\) in terms of \(x\) From our substitution \(x = \cos \theta\), we can express \(\theta\) as: \[ \theta = \cos^{-1}(x) \] Thus, substituting back, we get: \[ y = 3\cos^{-1}(x) \] ### Step 5: Differentiate \(y\) with respect to \(x\) Now we differentiate \(y\) with respect to \(x\): \[ \frac{dy}{dx} = 3 \cdot \frac{d}{dx}(\cos^{-1}(x)) \] Using the derivative of \(\cos^{-1}(x)\): \[ \frac{d}{dx}(\cos^{-1}(x)) = -\frac{1}{\sqrt{1 - x^2}} \] Thus: \[ \frac{dy}{dx} = 3 \cdot \left(-\frac{1}{\sqrt{1 - x^2}}\right) = -\frac{3}{\sqrt{1 - x^2}} \] ### Final Answer The derivative \(\frac{dy}{dx}\) is: \[ \frac{dy}{dx} = -\frac{3}{\sqrt{1 - x^2}} \] ---
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise REVISION EXERCISE|37 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise CHECK YOUR UNDERSTANDING|12 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise MISCELLANEOUS EXERCISE|23 Videos
  • APPLICATIONS OF THE INTEGRALS

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos
  • DETERMINANTS

    MODERN PUBLICATION|Exercise Chapter test 4|12 Videos

Similar Questions

Explore conceptually related problems

y=(x^(-1/3))^4 find dy/dx

y=(x-1)/((x-2)(x-3)) , find dy/dx

y=(x^(1/3))^4 , find dy/dx

If y=sin ^(-1) (4x^(3) -3x) ,then ( dy)/(dx) =

If y = cos^(-1) (4x^(3) -3x) " then " (dy)/(dx)= ?

y=x(1+x)^3 , find dy/dx

If y=sin^(-1)(3x)+sec^(-1)((1)/(3x)), find (dy)/(dx) .

y=(x+1)^3(x-1) find dy/dx

If y=cos ^(-1) ((1)/( 3x-4x^(3))) ,then (dy)/(dx)

y=(x^4+4)(x^2-3) find dy/dx