Home
Class 12
MATHS
Find dy/dx" when "tan^(-1)(x^(2)+y^(2))=...

Find `dy/dx" when "tan^(-1)(x^(2)+y^(2))=0`.

Text Solution

AI Generated Solution

The correct Answer is:
To find \(\frac{dy}{dx}\) when \(\tan^{-1}(x^2 + y^2) = 0\), we can follow these steps: ### Step 1: Simplify the equation Given: \[ \tan^{-1}(x^2 + y^2) = 0 \] This implies: \[ x^2 + y^2 = \tan(0) \] Since \(\tan(0) = 0\), we have: \[ x^2 + y^2 = 0 \] ### Step 2: Rearranging the equation From the equation \(x^2 + y^2 = 0\), we can express \(y^2\) in terms of \(x^2\): \[ y^2 = -x^2 \] ### Step 3: Differentiate both sides with respect to \(x\) Now, we differentiate both sides of the equation \(y^2 = -x^2\) with respect to \(x\): \[ \frac{d}{dx}(y^2) = \frac{d}{dx}(-x^2) \] Using the chain rule on the left side, we get: \[ 2y \frac{dy}{dx} = -2x \] ### Step 4: Solve for \(\frac{dy}{dx}\) Now, we can isolate \(\frac{dy}{dx}\): \[ 2y \frac{dy}{dx} = -2x \] Dividing both sides by \(2y\) (assuming \(y \neq 0\)): \[ \frac{dy}{dx} = -\frac{x}{y} \] ### Final Result Thus, the derivative \(\frac{dy}{dx}\) is: \[ \frac{dy}{dx} = -\frac{x}{y} \] ---
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise REVISION EXERCISE|37 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise CHECK YOUR UNDERSTANDING|12 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise MISCELLANEOUS EXERCISE|23 Videos
  • APPLICATIONS OF THE INTEGRALS

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos
  • DETERMINANTS

    MODERN PUBLICATION|Exercise Chapter test 4|12 Videos

Similar Questions

Explore conceptually related problems

Find (dy)/(dx) if,tan ^(-1)(x^(2)+y^(2))=a

(dy)/(dx) if a=tan^(-1)(x^(2)+y^(2))

find (dy)/(dx), when y=tan^(-1)((2x)/(1-x^(2)))

Find dy/dx if y=e^(tan^-1(x^2)

Find (dy)/(dx) , when: logsqrt(x^(2)+y^(2))=tan^(-1).(y)/(x)

Find (dy)/(dx) , when: (x^(2)+y^(2))^(2)=xy

Find (dy)/(dx) if y=tan^(-1)(4x)/(1+5x^(2))+tan^(-1)(2+3x)/(3-2x)

Find (dy)/(dx) if y=tan^(-1)((4x)/(1+5x^(2)))+tan^(-1)((2+3x)/(3-2x))

Find (dy)/(dx) when (y-tan^(-1))(x)/(1+sqrt(1-x^(2)))+sin[2tan^(-1)sqrt((1-x)/(1+x))]

Find (dy)/(dx) , when: tan(x+y)+tan(x-y)=1