Home
Class 12
MATHS
If x = e^(x//y) , then prove that (dy)/(...

If `x = e^(x//y)` , then prove that `(dy)/(dx) = (x-y)/(xlogx)`.

Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise REVISION EXERCISE|37 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise CHECK YOUR UNDERSTANDING|12 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise MISCELLANEOUS EXERCISE|23 Videos
  • APPLICATIONS OF THE INTEGRALS

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos
  • DETERMINANTS

    MODERN PUBLICATION|Exercise Chapter test 4|12 Videos

Similar Questions

Explore conceptually related problems

If x=e^((x)/(y)), prove that (dy)/(dx)=(x-y)/(x log x)

If x=e^(x/y), prove that (dy)/(dx)=(x-y)/(x log x)

If y=(e^(x))/(x) then prove that x(dy)/(dx)=y (x-1)

if e^(-y)y=x then prove that (dy)/(dx)=(y)/(x(1-y))

If e^x+e^y=e^(x+y) then prove that dy/dx =- e^(y-x)

If y^(x)=e^(y-x) , then prove that (dy)/(dx) = ((1+logy)^(2))/(logy)

If x^(y)=e^(x-y) then prove that (dy)/(dx)=(logx)/((1+logx)^(2))

If xy=e^(x-y) , prove that (dy)/(dx)=(y(x-1))/(x(y+1)) .

If x^(y)=e^(x-y) , prove that (dy)/(dx)=(logx)/((1+logx)^(2)).

if x^(y)=e^(x-y) then prove that (dy)/(dx)=(log_(e)x)/((1+log_(e)x)^(2))