Home
Class 12
MATHS
Differentiable the following w.r.t. x : ...

Differentiable the following w.r.t. x :
`e^(sec^(2)x)+3cos^(-1)x`.

Text Solution

AI Generated Solution

The correct Answer is:
To differentiate the function \( y = e^{\sec^2 x} + 3 \cos^{-1} x \) with respect to \( x \), we will use the sum rule of differentiation, which states that the derivative of a sum is the sum of the derivatives. ### Step-by-Step Solution: 1. **Identify the components of the function**: \[ y = e^{\sec^2 x} + 3 \cos^{-1} x \] Here, we can denote: - \( u = e^{\sec^2 x} \) - \( v = 3 \cos^{-1} x \) 2. **Differentiate \( u \)**: To differentiate \( u = e^{\sec^2 x} \), we will use the chain rule. The derivative of \( e^f \) is \( e^f \cdot f' \). - First, find \( f = \sec^2 x \). - The derivative \( f' = \frac{d}{dx}(\sec^2 x) \) can be found using the chain rule: \[ \frac{d}{dx}(\sec^2 x) = 2 \sec^2 x \tan x \] - Therefore, using the chain rule: \[ \frac{du}{dx} = e^{\sec^2 x} \cdot \frac{d}{dx}(\sec^2 x) = e^{\sec^2 x} \cdot 2 \sec^2 x \tan x \] 3. **Differentiate \( v \)**: The derivative of \( v = 3 \cos^{-1} x \) is: \[ \frac{dv}{dx} = 3 \cdot \frac{d}{dx}(\cos^{-1} x) = 3 \cdot \left(-\frac{1}{\sqrt{1 - x^2}}\right) = -\frac{3}{\sqrt{1 - x^2}} \] 4. **Combine the derivatives**: Now, we can combine the derivatives using the sum rule: \[ \frac{dy}{dx} = \frac{du}{dx} + \frac{dv}{dx} \] Substituting the derivatives we found: \[ \frac{dy}{dx} = e^{\sec^2 x} \cdot 2 \sec^2 x \tan x - \frac{3}{\sqrt{1 - x^2}} \] 5. **Final expression**: Thus, the derivative of the given function with respect to \( x \) is: \[ \frac{dy}{dx} = 2 \sec^2 x \tan x \cdot e^{\sec^2 x} - \frac{3}{\sqrt{1 - x^2}} \]
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise CHECK YOUR UNDERSTANDING|12 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise COMPETITION FILE|16 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise EXERCISE|16 Videos
  • APPLICATIONS OF THE INTEGRALS

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos
  • DETERMINANTS

    MODERN PUBLICATION|Exercise Chapter test 4|12 Videos

Similar Questions

Explore conceptually related problems

Differentiate the following w.r.t. x : e^(sec^(2)x)+3cos^(-1)x .

Differentiate the following w.r.t. x : e^(-x)

Differentiate the following w.r.t. x : e^(x)/x

Differentiate the following w.r.t. x : e^(x)sinx

Differentiate the following w.r.t. x : (sec^(2)x)^(1//x)

Differentiate the following w.r.t. x : e^(x)/sinx

Differentiate the following w.r.t. x : e^(cos^(-1)x^(2)

Differentiate the following w.r.t. x : e^(x^(3))

Differentiate the following w.r.t. x : e^(-3x)sin^(2)3x

Differentiate the following w.r.t. x : x^(cos^(-1)x)

MODERN PUBLICATION-CONTINUITY AND DIFFERENTIABILITY-REVISION EXERCISE
  1. Find, from first principle, the derivative of sin^(-1)x/x w.r.t. x.

    Text Solution

    |

  2. Differentiable the following w.r.t. x : sqrt(3x+2)+1/(sqrt(2x^(2)+4)...

    Text Solution

    |

  3. Differentiable the following w.r.t. x : e^(sec^(2)x)+3cos^(-1)x.

    Text Solution

    |

  4. Differentiate the following w.r.t. x : f(x)=log[(2-x)^(1//2)(x^(2)-1...

    Text Solution

    |

  5. Differentiate the following function w.r.t x : tan^(-1) ((sqrt(1+x) - ...

    Text Solution

    |

  6. Differentiate the following w.r.t. x: (3x^(2)-9x+5)^(9)

    Text Solution

    |

  7. Differentiate the following w.r.t. x: sin^(3)x+cos^(6)x

    Text Solution

    |

  8. Differentiate the following w.r.t. x: e^(log(x+sqrt(x^(2)+a^(2))))

    Text Solution

    |

  9. Differentiate the following w.r.t. x: e^(2logx+3x)

    Text Solution

    |

  10. Prove that (cot^(-1)x+"cot"^(-1)1/x) is a constant.

    Text Solution

    |

  11. If y=f((2x-1)/(x^2+1)) and f^(prime)(x)=sinx^2 , find (dy)/(dx) .

    Text Solution

    |

  12. Find the derivative of the following w.e.t. x : 3/(root(3)(x))-5/cos...

    Text Solution

    |

  13. Find the derivative of the following w.e.t. x : log(1/sqrtx)+5x^(a)-...

    Text Solution

    |

  14. If y=tan^(-1)((e^(2x)+1)/(e^(2x)-1)), prove that : dy/dx=-(2e^(2x))/...

    Text Solution

    |

  15. If the derivative of tan^(-1)(a+b x) takes the value 1 at x=0, prove t...

    Text Solution

    |

  16. Using the fact that s in (A + B) = s in A cos B + cos A s in Band the ...

    Text Solution

    |

  17. If sqrt(y+x) +sqrt(y-x) =c show that dy/dx = y/x -sqrt((y^2/x^2)-1)

    Text Solution

    |

  18. if sinx=ysin(x+b) show that (dy)/(dx)=(sinb)/(sin^2(x+b))

    Text Solution

    |

  19. If xsin(a+y)+sinacos(a+y)=0,p rov et h a t (dy)/(dx)=(sin^2(a+y))/(si...

    Text Solution

    |

  20. If y=xsin(a+y),p rov et h a t(dy)/(dx)=(sin^2(a+y))/(sin(a+y)-ycos(a+y...

    Text Solution

    |