Home
Class 12
MATHS
Differentiate the following w.r.t. x : ...

Differentiate the following w.r.t. x :
`f(x)=log[(2-x)^(1//2)(x^(2)-1)^(-1//4)]`

Text Solution

AI Generated Solution

The correct Answer is:
To differentiate the function \( f(x) = \log\left[(2-x)^{1/2}(x^2-1)^{-1/4}\right] \) with respect to \( x \), we can follow these steps: ### Step 1: Simplify the logarithmic expression Using the properties of logarithms, we can separate the logarithm of a product into the sum of logarithms: \[ f(x) = \log\left[(2-x)^{1/2}\right] + \log\left[(x^2-1)^{-1/4}\right] \] This can be rewritten as: \[ f(x) = \frac{1}{2} \log(2-x) - \frac{1}{4} \log(x^2-1) \] ### Step 2: Differentiate each term Now, we differentiate \( f(x) \) with respect to \( x \): \[ f'(x) = \frac{d}{dx}\left(\frac{1}{2} \log(2-x)\right) - \frac{d}{dx}\left(\frac{1}{4} \log(x^2-1)\right) \] Using the chain rule for differentiation: 1. For the first term: \[ \frac{d}{dx}\left(\frac{1}{2} \log(2-x)\right) = \frac{1}{2} \cdot \frac{1}{2-x} \cdot (-1) = -\frac{1}{2(2-x)} \] 2. For the second term: \[ \frac{d}{dx}\left(-\frac{1}{4} \log(x^2-1)\right) = -\frac{1}{4} \cdot \frac{1}{x^2-1} \cdot (2x) = -\frac{1}{2} \cdot \frac{x}{x^2-1} \] ### Step 3: Combine the derivatives Now, we can combine the derivatives: \[ f'(x) = -\frac{1}{2(2-x)} - \frac{x}{2(x^2-1)} \] ### Step 4: Simplify the expression To combine these fractions, we can find a common denominator, which is \( 2(2-x)(x^2-1) \): \[ f'(x) = -\frac{(x^2-1) + x(2-x)}{2(2-x)(x^2-1)} \] Expanding the numerator: \[ -(x^2 - 1 + 2x - x^2) = -(-2x + 1) = 2x - 1 \] Thus, the derivative simplifies to: \[ f'(x) = \frac{2x - 1}{2(2-x)(x^2-1)} \] ### Final Answer The derivative of the function \( f(x) \) with respect to \( x \) is: \[ f'(x) = \frac{2x - 1}{2(2-x)(x^2-1)} \]
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise CHECK YOUR UNDERSTANDING|12 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise COMPETITION FILE|16 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise EXERCISE|16 Videos
  • APPLICATIONS OF THE INTEGRALS

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos
  • DETERMINANTS

    MODERN PUBLICATION|Exercise Chapter test 4|12 Videos

Similar Questions

Explore conceptually related problems

Differentiate the following w.r.t.x : sin(x^2)

Differentiate the following w.r.t. x : (1/2)^(x)

Differentiate the following w.r.t. x : (1+x)^(logx)

Differentiate the following w.r.t. x : x^(x^(2))

Differentiate the following w.r.t. x : log(sinx)

Differentiate the following w.r.t. x: 3^(x+2) .

Differentiate the following w.r.t. x : sqrtxlogx^(2)

Differentiate the following w.r.t.x. x^(x^2)

Differentiate the following w.r.t. x : 1/(logcosx)

Differentiate the following w.r.t. x: |2x - 1|

MODERN PUBLICATION-CONTINUITY AND DIFFERENTIABILITY-REVISION EXERCISE
  1. Differentiable the following w.r.t. x : sqrt(3x+2)+1/(sqrt(2x^(2)+4)...

    Text Solution

    |

  2. Differentiable the following w.r.t. x : e^(sec^(2)x)+3cos^(-1)x.

    Text Solution

    |

  3. Differentiate the following w.r.t. x : f(x)=log[(2-x)^(1//2)(x^(2)-1...

    Text Solution

    |

  4. Differentiate the following function w.r.t x : tan^(-1) ((sqrt(1+x) - ...

    Text Solution

    |

  5. Differentiate the following w.r.t. x: (3x^(2)-9x+5)^(9)

    Text Solution

    |

  6. Differentiate the following w.r.t. x: sin^(3)x+cos^(6)x

    Text Solution

    |

  7. Differentiate the following w.r.t. x: e^(log(x+sqrt(x^(2)+a^(2))))

    Text Solution

    |

  8. Differentiate the following w.r.t. x: e^(2logx+3x)

    Text Solution

    |

  9. Prove that (cot^(-1)x+"cot"^(-1)1/x) is a constant.

    Text Solution

    |

  10. If y=f((2x-1)/(x^2+1)) and f^(prime)(x)=sinx^2 , find (dy)/(dx) .

    Text Solution

    |

  11. Find the derivative of the following w.e.t. x : 3/(root(3)(x))-5/cos...

    Text Solution

    |

  12. Find the derivative of the following w.e.t. x : log(1/sqrtx)+5x^(a)-...

    Text Solution

    |

  13. If y=tan^(-1)((e^(2x)+1)/(e^(2x)-1)), prove that : dy/dx=-(2e^(2x))/...

    Text Solution

    |

  14. If the derivative of tan^(-1)(a+b x) takes the value 1 at x=0, prove t...

    Text Solution

    |

  15. Using the fact that s in (A + B) = s in A cos B + cos A s in Band the ...

    Text Solution

    |

  16. If sqrt(y+x) +sqrt(y-x) =c show that dy/dx = y/x -sqrt((y^2/x^2)-1)

    Text Solution

    |

  17. if sinx=ysin(x+b) show that (dy)/(dx)=(sinb)/(sin^2(x+b))

    Text Solution

    |

  18. If xsin(a+y)+sinacos(a+y)=0,p rov et h a t (dy)/(dx)=(sin^2(a+y))/(si...

    Text Solution

    |

  19. If y=xsin(a+y),p rov et h a t(dy)/(dx)=(sin^2(a+y))/(sin(a+y)-ycos(a+y...

    Text Solution

    |

  20. Differentiate log[log(logx)] w.r.t. x.

    Text Solution

    |