Home
Class 12
MATHS
For what choices of a, b, c, if any, doe...

For what choices of a, b, c, if any, does the function
`f(x)={{:(ax^(2)+bx+x" , "0lexle1),(bx-c" , "1lexle2),(x" , "xgt2):}`
become differentiable at x = 1 and x = 2?

Text Solution

AI Generated Solution

The correct Answer is:
To determine the values of \( a \), \( b \), and \( c \) such that the function \[ f(x) = \begin{cases} ax^2 + bx + 1 & \text{if } 0 \leq x \leq 1 \\ bx - c & \text{if } 1 < x \leq 2 \\ x & \text{if } x > 2 \end{cases} \] is differentiable at \( x = 1 \) and \( x = 2 \), we need to ensure that the function is continuous and that the derivatives from the left and right at these points are equal. ### Step 1: Check Continuity at \( x = 1 \) For \( f(x) \) to be continuous at \( x = 1 \), we need: \[ \lim_{x \to 1^-} f(x) = \lim_{x \to 1^+} f(x) = f(1) \] Calculating these limits: 1. **Left limit** as \( x \to 1^- \): \[ f(1) = a(1)^2 + b(1) + 1 = a + b + 1 \] 2. **Right limit** as \( x \to 1^+ \): \[ f(1) = b(1) - c = b - c \] Setting these equal for continuity: \[ a + b + 1 = b - c \] This simplifies to: \[ a + c + 1 = 0 \quad \text{(Equation 1)} \] ### Step 2: Check Differentiability at \( x = 1 \) For \( f(x) \) to be differentiable at \( x = 1 \), we need: \[ \lim_{x \to 1^-} f'(x) = \lim_{x \to 1^+} f'(x) \] Calculating the derivatives: 1. **Left derivative**: \[ f'(x) = 2ax + b \quad \Rightarrow \quad f'(1) = 2a(1) + b = 2a + b \] 2. **Right derivative**: \[ f'(x) = b \quad \Rightarrow \quad f'(1) = b \] Setting these equal for differentiability: \[ 2a + b = b \] This simplifies to: \[ 2a = 0 \quad \Rightarrow \quad a = 0 \quad \text{(Equation 2)} \] ### Step 3: Check Continuity at \( x = 2 \) For \( f(x) \) to be continuous at \( x = 2 \), we need: \[ \lim_{x \to 2^-} f(x) = \lim_{x \to 2^+} f(x) = f(2) \] Calculating these limits: 1. **Left limit** as \( x \to 2^- \): \[ f(2) = b(2) - c = 2b - c \] 2. **Right limit** as \( x \to 2^+ \): \[ f(2) = 2 \] Setting these equal for continuity: \[ 2b - c = 2 \quad \text{(Equation 3)} \] ### Step 4: Solve the System of Equations Now we have the following equations to solve: 1. \( a + c + 1 = 0 \) (from continuity at \( x = 1 \)) 2. \( a = 0 \) (from differentiability at \( x = 1 \)) 3. \( 2b - c = 2 \) (from continuity at \( x = 2 \)) Substituting \( a = 0 \) into Equation 1: \[ 0 + c + 1 = 0 \quad \Rightarrow \quad c = -1 \] Now substituting \( c = -1 \) into Equation 3: \[ 2b - (-1) = 2 \quad \Rightarrow \quad 2b + 1 = 2 \quad \Rightarrow \quad 2b = 1 \quad \Rightarrow \quad b = \frac{1}{2} \] ### Final Values Thus, we have: - \( a = 0 \) - \( b = \frac{1}{2} \) - \( c = -1 \) ### Summary of Values The values of \( a \), \( b \), and \( c \) that make the function differentiable at \( x = 1 \) and \( x = 2 \) are: - \( a = 0 \) - \( b = \frac{1}{2} \) - \( c = -1 \)
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise CHECK YOUR UNDERSTANDING|12 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise COMPETITION FILE|16 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise EXERCISE|16 Videos
  • APPLICATIONS OF THE INTEGRALS

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos
  • DETERMINANTS

    MODERN PUBLICATION|Exercise Chapter test 4|12 Videos

Similar Questions

Explore conceptually related problems

Dicuss the continuity of the function: f(x)={{:(1+x^(2)", "0lexle1),(2-x", "xgt1):} at x = 1.

Verify Rolle's Theorem for the function : f(x)={{:(-4x+5", "0lexle1),(2x-3" , "1ltxle2):}

Examine the continuity of the function : f(x)={{:(x+1" , "xle2),(2x-1" , "xgt2):} at x = 2.

The values of a and b if the function f(x)={{:(x^(2)+3x+a",",xle1),(bx+2",",xgt1):} is differentiable at x =1, are :

Discuss the applicability of Rolle's theorem on the function given by f(x) = {{:(x^(2)+1,if0lexle1),(3-x,if1lexle2):}

If f(x)={{:(3x^(2)+12x-1",",-1lexle2),(37-x",",2ltxle3):} , Then

Find 'a' and 'b' if the function : f(x)={{:((sinx)/(x)" , "-2lexlt0),(a.2^(x)" , "0lexle1),(b+x", "1ltxle2):} is a continuous function on [-2, 2].

Let f(x) be a function defined in 1lexleoo by f(x)={{:(2-x" for "1lexle2),(3x-x^(2)" for "xgt2):} What is the differentiable coefficient of f(x) at x=3 ?

MODERN PUBLICATION-CONTINUITY AND DIFFERENTIABILITY-REVISION EXERCISE
  1. If the derivative of tan^(-1)(a+b x) takes the value 1 at x=0, prove t...

    Text Solution

    |

  2. Using the fact that s in (A + B) = s in A cos B + cos A s in Band the ...

    Text Solution

    |

  3. If sqrt(y+x) +sqrt(y-x) =c show that dy/dx = y/x -sqrt((y^2/x^2)-1)

    Text Solution

    |

  4. if sinx=ysin(x+b) show that (dy)/(dx)=(sinb)/(sin^2(x+b))

    Text Solution

    |

  5. If xsin(a+y)+sinacos(a+y)=0,p rov et h a t (dy)/(dx)=(sin^2(a+y))/(si...

    Text Solution

    |

  6. If y=xsin(a+y),p rov et h a t(dy)/(dx)=(sin^2(a+y))/(sin(a+y)-ycos(a+y...

    Text Solution

    |

  7. Differentiate log[log(logx)] w.r.t. x.

    Text Solution

    |

  8. if y = e^((x)^(e^x)) + x^(e^(e^x)) + e^(x^(x^e)), then dy/dx=e^((x)^(e...

    Text Solution

    |

  9. y=sqrt(x+sqrt(x+sqrt(x+....+oo))). Find dy/dx

    Text Solution

    |

  10. Find dy/dx when : y=x^(sinx-cosx)+(x^(2)-1)/(x^(2)+1)

    Text Solution

    |

  11. If y=x^(cotx)+(2x^(2)-3)/(x^(2)+x+2), find (dy)/(dx).

    Text Solution

    |

  12. If y=x^((x^(x))), prove that : dy/dx=x^(x+x^(x))[1/x+(1+logx)logx].

    Text Solution

    |

  13. If y=(tanx)^((tanx)^((tanx)^...oo)), then prove that (dy)/(dx)=2 at x=...

    Text Solution

    |

  14. Differentiate tanxtan2xtan3xtan4x in two ways : (i) by taking logari...

    Text Solution

    |

  15. If x=sectheta-costheta and y=sec^n theta- cos^n theta then show that (...

    Text Solution

    |

  16. For what choices of a, b, c, if any, does the function f(x)={{:(ax^(...

    Text Solution

    |

  17. If y=A e^(-k t)cos(p t+c), then prove that (d^2y)/(dt^2)+2k(dy)/(dx)+n...

    Text Solution

    |

  18. Using mathematical induction prove that : d/(dx)(x^n)=n x^(n-1)for"\ "...

    Text Solution

    |

  19. If (1+x)^(n)=C(0)+C(1)x+C(2)x^(2)+....+C(n)x^(n), then prove that : ...

    Text Solution

    |

  20. If y=(ax^2)/((x-a)(x-b)(x-c))+(bx)/((x-b)(x-c))+c/(x-c)+1 then (y prim...

    Text Solution

    |