Home
Class 12
MATHS
Find dy/dx when 2x+3y=cosx....

Find `dy/dx` when `2x+3y=cosx`.

Text Solution

AI Generated Solution

The correct Answer is:
To find \(\frac{dy}{dx}\) for the equation \(2x + 3y = \cos x\), we will differentiate both sides of the equation with respect to \(x\). ### Step-by-Step Solution: 1. **Differentiate both sides with respect to \(x\)**: \[ \frac{d}{dx}(2x + 3y) = \frac{d}{dx}(\cos x) \] 2. **Apply the differentiation**: - The derivative of \(2x\) is \(2\). - The derivative of \(3y\) requires the use of the chain rule, which gives us \(3 \frac{dy}{dx}\). - The derivative of \(\cos x\) is \(-\sin x\). Thus, we have: \[ 2 + 3 \frac{dy}{dx} = -\sin x \] 3. **Isolate \(\frac{dy}{dx}\)**: - Subtract \(2\) from both sides: \[ 3 \frac{dy}{dx} = -\sin x - 2 \] - Divide both sides by \(3\): \[ \frac{dy}{dx} = \frac{-\sin x - 2}{3} \] ### Final Answer: \[ \frac{dy}{dx} = \frac{-\sin x - 2}{3} \]
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise COMPETITION FILE|16 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise REVISION EXERCISE|37 Videos
  • APPLICATIONS OF THE INTEGRALS

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos
  • DETERMINANTS

    MODERN PUBLICATION|Exercise Chapter test 4|12 Videos

Similar Questions

Explore conceptually related problems

Find dy/dx" when "2x+3y=sinx .

Find (dy)/(dx) when 2x+3y=sin x

Find (dy)/(dx) when : y=(cosx)/(1+sinx)

Find (dy)/(dx) , when: y=(cosx)^(cosx)

Find (dy)/(dx) , when: y=(cosx)^(logx)

Find (dy)/(dx)" when "y=(x+cosx)/(tanx) .

Find dy/dx when : y=x^(sinx-cosx)+(x^(2)-1)/(x^(2)+1)

Find dy/dx if 2x+3y=cosx .

Find (dy)/(dx) where (i) y=(cosx log x)

Find (dy)/(dx) , when: y=(sinx)^(cosx)