Home
Class 12
MATHS
If y=log(cose^(x))," then "dy/dx = ....

If `y=log(cose^(x))," then "dy/dx` = _______.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to differentiate the function \( y = \log(\cos(e^x)) \) with respect to \( x \). Let's go through the steps systematically. ### Step 1: Differentiate the logarithmic function We start with the function: \[ y = \log(\cos(e^x)) \] Using the chain rule for differentiation, we have: \[ \frac{dy}{dx} = \frac{1}{\cos(e^x)} \cdot \frac{d}{dx}(\cos(e^x)) \] ### Step 2: Differentiate the cosine function Next, we need to differentiate \( \cos(e^x) \). Using the chain rule again: \[ \frac{d}{dx}(\cos(e^x)) = -\sin(e^x) \cdot \frac{d}{dx}(e^x) \] Since the derivative of \( e^x \) is \( e^x \), we get: \[ \frac{d}{dx}(\cos(e^x)) = -\sin(e^x) \cdot e^x \] ### Step 3: Substitute back into the derivative Now we substitute this back into our expression for \( \frac{dy}{dx} \): \[ \frac{dy}{dx} = \frac{1}{\cos(e^x)} \cdot (-\sin(e^x) \cdot e^x) \] This simplifies to: \[ \frac{dy}{dx} = -\frac{\sin(e^x) \cdot e^x}{\cos(e^x)} \] ### Step 4: Simplify using trigonometric identities Using the identity \( \tan(x) = \frac{\sin(x)}{\cos(x)} \), we can rewrite our expression: \[ \frac{dy}{dx} = -e^x \tan(e^x) \] ### Final Result Thus, the derivative \( \frac{dy}{dx} \) is: \[ \frac{dy}{dx} = -e^x \tan(e^x) \]
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise COMPETITION FILE|16 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise REVISION EXERCISE|37 Videos
  • APPLICATIONS OF THE INTEGRALS

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos
  • DETERMINANTS

    MODERN PUBLICATION|Exercise Chapter test 4|12 Videos

Similar Questions

Explore conceptually related problems

If y=log(cose^(x)),"then find "dy/dx .

If y=log(e^(x^2)) , then dy/dx=?

If y = log ( cos e ^(x)), then (dy)/(dx)=

If y = log (cos e^(x)), then (dy)/(dx) is:

If y=log x^(x), then (dy)/(dx)=

If y=log(x/(a+bx)) then find dy/dx

If y =log x^(x) ,then (dy)/(dx) =

If y=(log x)^(x) then (dy)/(dx) =

y=log(x/(1+bx)) then (dy)/(dx)

If y =log (log x) then (dy)/(dx) =