Home
Class 12
MATHS
Find (d^(2)y)/(dx^(2))" when "y=logx+x....

Find `(d^(2)y)/(dx^(2))" when "y=logx+x`.

Text Solution

AI Generated Solution

The correct Answer is:
To find the second derivative \(\frac{d^2y}{dx^2}\) when \(y = \log x + x\), we will follow these steps: ### Step 1: Find the first derivative \(\frac{dy}{dx}\) Given: \[ y = \log x + x \] To find \(\frac{dy}{dx}\), we differentiate \(y\) with respect to \(x\): \[ \frac{dy}{dx} = \frac{d}{dx}(\log x) + \frac{d}{dx}(x) \] Using the derivatives: - The derivative of \(\log x\) is \(\frac{1}{x}\). - The derivative of \(x\) is \(1\). Thus, we have: \[ \frac{dy}{dx} = \frac{1}{x} + 1 \] ### Step 2: Simplify the first derivative We can express \(\frac{dy}{dx}\) in a simpler form: \[ \frac{dy}{dx} = \frac{1}{x} + 1 = \frac{1 + x}{x} \] ### Step 3: Find the second derivative \(\frac{d^2y}{dx^2}\) Now we differentiate \(\frac{dy}{dx}\) to find \(\frac{d^2y}{dx^2}\): \[ \frac{d^2y}{dx^2} = \frac{d}{dx}\left(\frac{1 + x}{x}\right) \] Using the quotient rule, where if \(u = 1 + x\) and \(v = x\), then: \[ \frac{d}{dx}\left(\frac{u}{v}\right) = \frac{v \frac{du}{dx} - u \frac{dv}{dx}}{v^2} \] Calculating \(du\) and \(dv\): - \(u = 1 + x \Rightarrow \frac{du}{dx} = 1\) - \(v = x \Rightarrow \frac{dv}{dx} = 1\) Applying the quotient rule: \[ \frac{d^2y}{dx^2} = \frac{x(1) - (1 + x)(1)}{x^2} \] ### Step 4: Simplify the second derivative Now simplify the expression: \[ \frac{d^2y}{dx^2} = \frac{x - (1 + x)}{x^2} = \frac{x - 1 - x}{x^2} = \frac{-1}{x^2} \] ### Final Answer Thus, the second derivative is: \[ \frac{d^2y}{dx^2} = -\frac{1}{x^2} \] ---
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise COMPETITION FILE|16 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise REVISION EXERCISE|37 Videos
  • APPLICATIONS OF THE INTEGRALS

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos
  • DETERMINANTS

    MODERN PUBLICATION|Exercise Chapter test 4|12 Videos

Similar Questions

Explore conceptually related problems

Find (d^(2)y)/(dx^(2)) when y=e^(x)+sinx

Find (d^(2)y)/(dx^(2))" when "y=e^(x)+cosx

Find (d^(2)y)/(dx^(2)) when y=tan^(-1)x

Find (d^(2)y )/(dx^(2)) , when y =e^(x) sin x

Find (d^(2)y)/(dx^(2)) in the following If x^(2/3)+y^(2/3)=a^(2/3),"find "(d^(2)y)/(dx^(2))

Find (dy)/(dx), when: y=(logx)^(sinx)

Find (dy)/(dx) , when: y=(logx)^(x)

Find (a)dy/dxand(b)(d^(2)y)/(dx^(2)) when y is given by : logx-x

Find (dy)/(dx) , when: y=(cosx)^(logx)

Find (a)dy/dxand(b)(d^(2)y)/(dx^(2)) when y is given by : e^(x)+x^(4) .