Home
Class 12
MATHS
Find (d^(2)y)/(dx^(2))" when "y=e^(x)+co...

Find `(d^(2)y)/(dx^(2))" when "y=e^(x)+cosx`

Text Solution

AI Generated Solution

The correct Answer is:
To find the second derivative of the function \( y = e^x + \cos x \), we will follow these steps: ### Step 1: Find the first derivative \( \frac{dy}{dx} \) Given: \[ y = e^x + \cos x \] We differentiate \( y \) with respect to \( x \): \[ \frac{dy}{dx} = \frac{d}{dx}(e^x) + \frac{d}{dx}(\cos x) \] Using the known derivatives: - The derivative of \( e^x \) is \( e^x \). - The derivative of \( \cos x \) is \( -\sin x \). Thus, we have: \[ \frac{dy}{dx} = e^x - \sin x \] ### Step 2: Find the second derivative \( \frac{d^2y}{dx^2} \) Now, we differentiate \( \frac{dy}{dx} \) to find \( \frac{d^2y}{dx^2} \): \[ \frac{d^2y}{dx^2} = \frac{d}{dx}(e^x - \sin x) \] Again, using the known derivatives: - The derivative of \( e^x \) is \( e^x \). - The derivative of \( -\sin x \) is \( -\cos x \). Thus, we have: \[ \frac{d^2y}{dx^2} = e^x - \cos x \] ### Final Answer: \[ \frac{d^2y}{dx^2} = e^x - \cos x \] ---
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise COMPETITION FILE|16 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise REVISION EXERCISE|37 Videos
  • APPLICATIONS OF THE INTEGRALS

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos
  • DETERMINANTS

    MODERN PUBLICATION|Exercise Chapter test 4|12 Videos

Similar Questions

Explore conceptually related problems

Find (d^(2)y)/(dx^(2)) when y=e^(x)+sinx

Find (d^(2)y)/(dx^(2))" when "y=logx+x .

Find (d^(2)y)/(dx^(2)) when y=tan^(-1)x

Find (d^(2)y )/(dx^(2)) , when y =e^(x) sin x

Find (d^(2)y)/(dx^(2)) when y=logx/x .

Find (d^(2)y)/(dx^(2)) , if y=e^(2x+1)

Find (d^(2)y)/(dx^(2)), where y=log((x^(2))/(e^(2)))

Find (d^(2)y)/(dx^(2)), where y=log((x^(2))/(e^(2)))

If y=e^(x) , then (d^(2)y)/(dx^(2)) = e^(x) .

Find (dy)/(dx)" when "y=(x^(5)-cosx)/(sinx) .