Home
Class 12
MATHS
Let f : (-1,1) to R be a differentiable ...

Let f : (-1,1) `to` R be a differentiable function with f(0) =-1 and f'(0)=1
Let g(x)=`[f(f(2x)+1)]^2` . Then g'(0)=

A

`4`

B

`-4`

C

log 2

D

`-log2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we need to find the derivative \( g'(0) \) for the function defined as \( g(x) = [f(f(2x) + 1)]^2 \). ### Step 1: Define the function We start with the function: \[ g(x) = [f(f(2x) + 1)]^2 \] ### Step 2: Differentiate \( g(x) \) Using the chain rule for differentiation, we have: \[ g'(x) = 2[f(f(2x) + 1)] \cdot \frac{d}{dx}[f(f(2x) + 1)] \] ### Step 3: Differentiate the inner function Next, we need to differentiate \( f(f(2x) + 1) \). Again, we will use the chain rule: \[ \frac{d}{dx}[f(f(2x) + 1)] = f'(f(2x) + 1) \cdot \frac{d}{dx}[f(2x) + 1] \] Now, differentiating \( f(2x) + 1 \): \[ \frac{d}{dx}[f(2x) + 1] = f'(2x) \cdot 2 \] ### Step 4: Combine the derivatives Now we can combine these results: \[ g'(x) = 2[f(f(2x) + 1)] \cdot f'(f(2x) + 1) \cdot (2f'(2x)) \] Thus, \[ g'(x) = 4[f(f(2x) + 1)] \cdot f'(f(2x) + 1) \cdot f'(2x) \] ### Step 5: Evaluate \( g'(0) \) Now we need to evaluate \( g'(0) \): 1. Calculate \( f(2 \cdot 0) + 1 = f(0) + 1 = -1 + 1 = 0 \). 2. Therefore, \( g'(0) = 4[f(0)] \cdot f'(0) \cdot f'(0) \). 3. Substitute \( f(0) = -1 \) and \( f'(0) = 1 \): \[ g'(0) = 4 \cdot (-1) \cdot 1 \cdot 1 = -4 \] ### Final Answer Thus, the value of \( g'(0) \) is: \[ \boxed{-4} \]
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise CHECK YOUR UNDERSTANDING|12 Videos
  • APPLICATIONS OF THE INTEGRALS

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos
  • DETERMINANTS

    MODERN PUBLICATION|Exercise Chapter test 4|12 Videos

Similar Questions

Explore conceptually related problems

Let f : (-1,1) to R be a differentiabale function with f(0) = -1 and f'(0) = 1. Let g(x) = [f(2f(x)+2)]^(2) , then g'(0)=

Let f:(-1,1)rarr R be a differentiable function with f(0)=-1 and f'(0)=1. Let g(x)=[f(2f(x)+2)]^(2)* Then g'(0)*-4(b)0(c)-2 (d) 4

Let f:""(1,""1) rarr R be a differentiable function with f(0)""=""-1" "a n d" "f'(0)""=""1 . Let g(x)""=""[f(2f(x)""+""2)]^2 . Then g'(0)""= (1) 4 (2) 0 (3) 2 (4) 4

Let f : (-5,5)rarrR be a differentiable function of with f(4) = 1, f'(4)=1, f(0) = -1 and f'(0) = If g(x)=(f(2f^(2)(x)+2))^(2), then g'(0) equals

Let f : (-5,5)rarrR be a differentiable function of with f(4) = 1, f'(4)=1, f(0) = -1 and f'(0) = If g(x)=(f(2f^(2)(x)+2))^(2), then g'(0) equals