Home
Class 12
MATHS
for x > 1 if (2x)^(2y)=4e^(2x-2y) then (...

for `x > 1` if `(2x)^(2y)=4e^(2x-2y)` then `(1+log_e 2x)^2 (dy)/(dx)`

A

`log_e2x`

B

`x log_e 2x`

C

`(x log_e 2x+ log_e 2)/x`

D

`(xlog_e 2x-log_e 2)/x`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise CHECK YOUR UNDERSTANDING|12 Videos
  • APPLICATIONS OF THE INTEGRALS

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos
  • DETERMINANTS

    MODERN PUBLICATION|Exercise Chapter test 4|12 Videos

Similar Questions

Explore conceptually related problems

If e^(2x) +e^(2y) =e^(2( x+y)),then (dy)/(dx)=

If x^(y)=e^(x-y) then prove that (dy)/(dx)=(ln x)/((1+ln x)^(2))

If y=e^(x) log (sin 2x), find (dy)/(dx) .

If y =( e^(2x)-e ^(-2x))/( e^(2x) +e^(-2x) ),then (dy)/(dx) =

If y = e^(x+2log x ),then (dy)/(dx)=

If x^(y)=e^(x-y), then show that (dy)/(dx)=(log x)/((1+log x)^(2))

If x^(2) = e^(x-y) , then (dy)/(dx) at x = 1 is ……..

If y=(e^(2x)-1)/(e^(2x)+1)," then "(dy)/(dx)=

If x^(y)=e^(x-y), Prove that (dy)/(dx)=(log x)/((1+log x)^(2))