Home
Class 12
MATHS
if sqrtx+sqrty=4, then (dy)/(dx) is :...

if `sqrtx+sqrty=4`, then `(dy)/(dx)` is :

A

`-sqrt(x/y)`

B

`-sqrt(y/x)`

C

`sqrt(x/y)`

D

`sqrt(y/x)`

Text Solution

AI Generated Solution

The correct Answer is:
To find \(\frac{dy}{dx}\) given the equation \(\sqrt{x} + \sqrt{y} = 4\), we will use implicit differentiation. Here’s a step-by-step solution: ### Step 1: Differentiate both sides of the equation We start with the equation: \[ \sqrt{x} + \sqrt{y} = 4 \] Now, we differentiate both sides with respect to \(x\). ### Step 2: Apply the differentiation Using the chain rule, we differentiate: - The derivative of \(\sqrt{x}\) is \(\frac{1}{2\sqrt{x}}\). - The derivative of \(\sqrt{y}\) is \(\frac{1}{2\sqrt{y}} \cdot \frac{dy}{dx}\) (using the chain rule since \(y\) is a function of \(x\)). So, differentiating gives us: \[ \frac{1}{2\sqrt{x}} + \frac{1}{2\sqrt{y}} \cdot \frac{dy}{dx} = 0 \] ### Step 3: Isolate \(\frac{dy}{dx}\) Now, we need to isolate \(\frac{dy}{dx}\): \[ \frac{1}{2\sqrt{y}} \cdot \frac{dy}{dx} = -\frac{1}{2\sqrt{x}} \] Multiplying both sides by \(2\sqrt{y}\) gives: \[ \frac{dy}{dx} = -\frac{2\sqrt{y}}{2\sqrt{x}} = -\frac{\sqrt{y}}{\sqrt{x}} \] ### Final Result Thus, we have: \[ \frac{dy}{dx} = -\frac{\sqrt{y}}{\sqrt{x}} \]
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise COMPETITION FILE|16 Videos
  • APPLICATIONS OF THE INTEGRALS

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos
  • DETERMINANTS

    MODERN PUBLICATION|Exercise Chapter test 4|12 Videos

Similar Questions

Explore conceptually related problems

If sqrtx+sqrty=2 , then what is (dy)/(dx) at y = 1 and x = 1 equal to ?

If y =sqrt sin sqrtx ,then (dy)/(dx) =

If sqrtx + sqrty = sqrta " then " (dy)/(dx) = ?

If x=(1-sqrty)/(1+sqrty then (dy)/(dx)=

If y= cos sqrtx ,then (dy)/(dx) =

If y = x^(sqrtx) " then " (dy)/(dx) = ?

If y = "log "((1 + sqrtx)/(1 - sqrtx)) " then " (dy)/(dx) = ?

If y=sec^(-1) ((sqrtx-1)/(x+sqrtx))+sin^(-1) ((x+sqrtx)/(sqrtx-1))," then " (dy)/(dx)=

If y=(1+x)sqrtx then find (dy)/(dx)